
Revisiting Optimal Decoding for Machine Translation IBM Model 4

Sebastian Riedel∗† James Clarke‡
∗Department of Computer Science, University of Tokyo, Japan

†Database Center for Life Science, Research Organization ofInformation and System, Japan
‡Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801

∗sebastian.riedel@gmail.com †clarkeje@gmail.com

Abstract

This paper revisits optimal decoding for statis-
tical machine translation using IBM Model 4.
We show that exact/optimal inference using
Integer Linear Programming is more practical
than previously suggested when used in con-
junction with the Cutting-Plane Algorithm. In
our experiments we see that exact inference
can provide a gain of up to one BLEU point
for sentences of length up to 30 tokens.

1 Introduction

Statistical machine translation (MT) systems typ-
ically contain three essential components: (1) a
model, specifying how the process of translation oc-
curs; (2) learning regime, dictating the estimation of
model’s parameters; (3) decoding algorithm which
provides the most likely translation of an input sen-
tence given a model and its parameters.

The search space in statistical machine transla-
tion is vast which can make it computationally pro-
hibitively to perform exact/optimal decoding (also
known as search and MAP inference) especially
since dynamic programming methods (such as the
Viterbi algorithm) are typically not applicable. Thus
greedy or heuristic beam-based methods have been
prominent (Koehn et al., 2007) due to their effi-
ciency. However, the efficiency of such methods
have two drawbacks: (1) they are approximate and
give no bounds as to how far their solution is
away from the true optimum; (2) it can be difficult
to incorporate additional generic global constraints
into the search. The first point may be especially
problematic from a research perspective as without
bounds on the solutions it is difficult to determine
whether the model or the search algorithm requires
improvement for better translations.

Similar problems exist more widely throughout
natural language processing where greedy based
methods and heuristic beam search have been used
in lieu of exact methods. However, recently there has
been an increasing interest in using Integer Linear
Programming (ILP) as a means to find MAP solu-
tions. ILP overcomes the two drawbacks mentioned
above as it is guaranteed to be exact, and has the
ability to easily enforce global constraints through
additional linear constraints. However, efficiency is
usually sacrificed for these benefits.

Integer Linear Programming has previously been
used to perform exact decoding for MT using IBM
Model 4 and a bigram language model. Germann
et al. (2004) view the translation process akin to the
travelling salesman problem; however, from their re-
ported results it is clear that using ILP naively for de-
coding does not scale up beyond short sentences (of
eight tokens). This is due to the exponential num-
ber of constraints required to represent the decod-
ing problem as an ILP program. However, work in
dependency parsing (Riedel and Clarke, 2006) has
demonstrated that it is possible to use ILP to perform
efficient inference for very large programs when
used in an incremental manner. This raises the ques-
tion as to whether incremental (or Cutting-Plane)
ILP can also be used to decode IBM Model 4 on
real world sentences.

In this work we show that it is possible. Decod-
ing IBM Model 4 (in combination with a bigram
language model) using Cutting-Plane ILP scales to
much longer sentences. This affords us the oppor-
tunity to finally analyse the performance of IBM
Model 4 and the performance of its state-of-the-
art ReWrite decoder. We show that using exact in-
ference provides an increase of up to one BLEU
point on two language pairs (French-English and

German-English) in comparison to decoding using
the ReWrite decoder. Thus the ReWrite decoder per-
forms respectably but can be improved slightly, al-
beit at the cost of efficiency.

Although the community has generally moved
away from word-based models, we believe that dis-
playing optimal decoding in IBM Model 4 lays the
foundations of future work. It is the first step in pro-
viding a method for researchers to gain greater in-
sight into their translation models by mapping the
decoding problem of other models into an ILP rep-
resentation. ILP decoding will also allow the incor-
poration of global linguistic constraints in a manner
similar to work in other areas of natural language
processing.

The remainder of this paper is organised as fol-
lows: Sections 2 and 3 briefly recap IBM Model 4
and its ILP formulation. Section 4 reviews the
Cutting-Plane Algorithm. Section 5 outlines our ex-
periments and we end the paper with conclusions
and a discussion of open questions for the commu-
nity.

2 IBM Model 4

In this paper we focus on the translation model de-
fined by IBM Model 4 (Brown et al., 1993). Transla-
tion using IBM Model 4 is performed by treating the
translation process a noisy-channel model where the
probability of the English sentence given a French
sentence is,P (e|f) = P (f |e) · P (e), whereP (e) is
a language model of English. IBM Model 4 defines
P (f |e) and models the translation process as a gen-
erative process of how a sequence of target words
(in our case French or German) is generated from a
sequence of source words (English).

The generative story is as follows. Imagine we
have an English sentence,e = e1, . . . , el and along
with a NULL word (eo) and French sentence,f =
f1, . . . , fm. First a fertility is drawn for each English
word (including the NULL symbol). Then, for each
ei we then independently draws a number of French
words equal toei’s fertility. Finally we process the
English source tokens in sequence to determine the
positions of their generated French target words. We
refer the reader to Brown et al. (1993) for full details.

3 Integer Linear Programming
Formulation

Given a trained IBM Model 4 and a French sentence
f we need to find the English sentencee and align-
menta with maximalp (a, e|f) ⋍ p (e) · p (a, f |e).1

Germann et al. (2004) present an ILP formula-
tion of this problem. In this section we will give a
very high-level description of the formulation.2 For
brevity we refer the reader to the original work for
more details.

In the formulation of Germann et al. (2004) an
English translation is represented as the journey of
a travelling salesman that visits one English token
(hotel) per French token (city). Here the English to-
ken serves as the translation of the French one. A
set of binary variables denote whether or not cer-
tain English token pairs are directly connected in
this journey. A set of constraints guarantee that for
each French token exactly one English token is vis-
ited. The formulation also contains an exponential
number of constraints which forbid the possible cy-
cles the variables can represent. It is this set of con-
straints that renders MT decoding with ILP difficult.

4 Cutting Plane Algorithm

The ILP program above has an exponential number
of (cycle) constraints. Hence, simply passing the ILP
to an off-the-shelf ILP solver is not practical for all
but the smallest sentences. For this reason Germann
et al. (2004) only consider sentences of up to eight
tokens. However, recent work (Riedel and Clarke,
2006) has shown that even exponentially large de-
coding problems may be solved efficiently using ILP
solvers if a Cutting-Plane Algorithm (Dantzig et al.,
1954) is used.3

A Cutting-Plane Algorithm starts with a subset of
the complete set of constraints. In our case this sub-
set contains all but the (exponentially many) cycle
constraints. The corresponding ILP is solved by a

1Note that in theory we should be maximizingp (e|f). How-
ever, this requires summation over all possible alignmentsand
hence the problem is usually simplified as described here.

2Note that our actual formulation differs slightly from the
original work because we use a first order modelling language
that imposed certain restrictions on the type of constraints al-
lowed.

3It is worth mentioning that Cutting Plane Algorithms have
been successfully applied for solving very large instancesof the
Travelling Salesman Problem, a problem essentially equivalent
to the decoding in IBM Model 4.

standard ILP solver, and the solution is inspected
for cycles. If it contains no cycles, we have found
the true optimum: the solution with highest score
that does not violate any constraints. If the solution
does contain cycles, the corresponding constraints
are added to the ILP which is in turn solved again.
This process is continued until no more cycles can
be found.

5 Evaluation
In this section we describe our experimental setup
and results.

5.1 Experimental setup

Our experimental setup is designed to answer sev-
eral questions: (1) Is exact inference in IBM Model 4
possible for sentences of moderate length? (2) How
fast is exact inference using Cutting-Plane ILP?
(3) How well does the ReWrite Decoder4 perform
in terms of finding the optimal solution? (4) Does
optimal decoding produce better translations?

In order to answer these questions we obtain
a trained IBM Model 4 for French-English and
German-English on Europarl v3 using GIZA++. A
bigram language model with Witten-Bell smooth-
ing was estimated from the corpus using the CMU-
Cambridge Language Modeling Toolkit.

For exact decoding we use the two models to gen-
erate ILP programs for sentences of length up to
(and including) 30 tokens for French and 25 tokens
for German.5 We filter translation candidates follow-
ing Germann et al. (2004) by using only the top ten
translations for each word6 and a list of zero fertil-
ity words.7 This resulted in 1101 French and 1062
German sentences for testing purposes. The ILP pro-
grams were then solved using the method described
in Section 3. This was repeated using the ReWrite
Decoder using the same models.

5.2 Results

The Cutting-Plane ILP decoder (which we will refer
to as ILP decoder) produced output for 986 French
sentences and 954 German sentences. From this we
can conclude that it is possible to solve 90% of our

4Available at http://www.isi.edu/
licensed-sw/rewrite-decoder/

5These limits were imposed to ensure the Python script gen-
erating the ILP programs did not run out of memory.

6Based ont(e|f).
7Extracted using the rules in the filter script

rewrite.mkZeroFert.perl

sentences exactly using ILP. For the remaining 115
and 108 sentences we did not produce a solution due
to: (1) the solver not completing within 30 minutes,
or (2) the solver running out of memory.8

Table 1 shows a comparison of the results, bro-
ken down by input sentence length, obtained on the
986 French and 954 German sentences using the ILP
and ReWrite decoders. First we turn our attention to
the solve times obtained using ILP (for the sentences
for which the solution was found within 30 min-
utes). The table shows that the average solve time
is under one minute per sentence. As we increase
the sentence length we see the solve time increases,
however, we never see an order of magnitude in-
crease between brackets as witnessed by Germann
et al. (2004) thus optimal decoding is more practi-
cal than previously suggested. The average number
of Cutting-Plane iterations required was 4.0 and 5.6
iterations for French and German respectively with
longer sentences requiring more on average.

We next examine the performance of the two de-
coders. Following Germann et al. (2004) we define
the ReWrite decoder as finding the optimal solution
if the English sentence is the same as that produced
by the ILP decoder. Table 1 shows that the ReWrite
decoder finds the optimal solution 40.1% of the time
for French and 29.1% for German. We also see the
ReWrite decoder is less likely to find the optimal so-
lution of longer sentences. We now look at the model
scores more closely. The average log model error
per token shows that the ReWrite decoder’s error is
proportional to sentence length and on average the
ReWrite decoder is 2.2% away from the optimal so-
lution in log space and 60.6% in probability space9

for French, and 4.7% and 60.9% for German.
Performing exact decoding increases the BLEU

score by 0.97 points on the French-English data set
and 0.61 points on the German-English data set with
similar performance increases observed for all sen-
tence lengths.

6 Discussion and Conclusions

In this paper we have demonstrated that optimal de-
coding of IBM Model 4 is more practical than previ-
ously suggested. Our results and analysis show that
exact decoding has a practical purpose. It has al-

8All experiments were run on 3.0GHz Intel Core 2 Duo with
4GB RAM using a single core.

9These high error rates are an artefact of the extremely small
probabilities involved.

Len #
Solve Stats BLEU

%Eq Err Time ReW ILP Diff
1–5 21 85.7 15.0 0.7 56.5 56.2 -0.32
6–10 121 64.5 7.8 1.4 26.1 28.0 1.90
11–15 118 47.9 5.9 2.7 22.9 23.7 0.85
16–20 238 37.4 6.3 13.9 20.4 20.8 0.41
21–25 266 30.5 6.6 70.1 20.9 22.5 1.62
26–30 152 25.7 5.3 162.6 20.9 22.3 1.38
1–30 986 40.1 6.5 48.1 21.7 22.6 0.97

(a) French-English

Len #
Solve Stats BLEU

%Eq Err Time ReW ILP Diff
1–5 31 83.9 27.4 0.8 40.7 41.1 0.44
6–10 175 51.4 19.7 1.7 19.2 20.9 1.72
11–15 242 30.6 17.4 5.5 16.0 16.7 0.72
16–20 257 19.1 14.4 23.9 15.8 15.9 0.16
21–25 249 15.7 14.0 173.4 15.3 15.9 0.61
1–25 954 29.1 16.4 53.5 16.1 16.7 0.61

(b) German-English

Table 1:Results on the two corpora. Len: range of sentence lengths; #: number of sentences in this range; %Eq: percentage of
times ILP decoder returned same English sentence; Err: average difference between decoder scores per token (×10−2) in log space;
Time: the average solve time per sentence of ILP decoder in seconds; BLEU ReW, BLEU ILP, BLEU Diff: the BLEU scores of the
output and difference between BLEU scores.

lowed us to investigate and validate the performance
of the ReWrite decoder through comparison of the
outputs and model scores from the two decoders.
Exact inference also provides an improvement in
translation quality as measured by BLEU score.

During the course of this research we have en-
countered numerous challenges that were not appar-
ent at the start. These challenges raise some interest-
ing research questions and practical issues one must
consider when embarking on exact inference using
ILP. The first issue is that the generation of the ILP
programs can take a long time. This leads us to won-
der if there may be a way to provide tighter integra-
tion of program generation and solving. Such an in-
tegration would avoid the need to query the models
in advance forall possible model components the
solver may require.

Related to this issue is how to tackle the incor-
poration of higher order language models. Currently
we use our bigram language model in a brute-force
manner: in order to generate the ILP we evaluate
the probability of all possible bigrams of English
candidate tokens in advance. It seems clear that
with higher order models this process will become
prohibitively expensive. Moreover, even if the ILP
could be generated efficiently, they will obviously be
larger and harder to solve than our current ILPs. One
possible solution may be the use of so-called de-
layed column generation strategies which incremen-
tally add parts of the objective function (and hence
the language model), but only when required by the
ILP solver.10

The use of ILP in other NLP tasks has provided

10Note that delayed column generation is dual to performing
cutting planes.

a principled and declarative manner to incorporate
global linguistic constraints on the system output.
This work lays the foundations for incorporating
similar global constraints for translation. We are cur-
rently investigating linguistic constraints for IBM
Model 4 and other word-based models in general. A
further extension is to reformulate higher-level MT
models (phrase- and syntax-based) within the ILP
framework. These representations could be more de-
sirable from a linguistic constraint perspective as the
formulation of constraints may be more intuitive.

Acknowledgements
We would like to thank Ulrich Germann and Daniel Marcu for
their help with the ISI ReWrite Decoder. This work is partly
supported by DARPA funding under the Bootstrap Learning
Program.

References
Brown, Peter F., Vincent J. Della Pietra, Stephen A. Della

Pietra, and Robert L. Mercer. 1993. The mathematics of sta-
tistical machine translation: parameter estimation.Compu-
tational Linguistics19(2):263–311.

Dantzig, George B., Ray Fulkerson, and Selmer M. Johnson.
1954. Solution of a large-scale traveling salesman problem.
Operations Research2:393–410.

Germann, Ulrich, Michael Jahr, Kevin Knight, Daniel Marcu,
and Kenji Yamada. 2004. Fast and optimal decoding for ma-
chine translation.Artificial Intelligence154(1-2):127–143.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-
Burch, Marcello Federico, Nicola Bertoldi, Brooke Cowan,
Wade Shen, Christine Moran, Richard Zens, Chris Dyer, On-
drej Bojar, Alexandra Constantin, and Evan Herbst. 2007.
Moses: Open source toolkit for statistical machine transla-
tion. In ACL 2009 Demos. Prague, Czech Republic, pages
177–180.

Riedel, Sebastian and James Clarke. 2006. Incremental integer
linear programming for non-projective dependency parsing.
In EMNLP 2006. pages 129–137.

