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Abstract Similar problems exist more widely throughout
This paper revisits optimal decoding for statis- natural language _pr_ocessing where greedy based
tical machine translation using I1BM Model 4. _me_thods and heuristic beam search have been used
We show that exact/optimal inference using N lieu of exact methods. However, recently there has
Integer Linear Programming is more practical been an increasing interest in using Integer Linear
than previously suggested when used in con-  Programming (ILP) as a means to find MAP solu-
junction with the Cutting-Plane Algorithm. In tions. ILP overcomes the two drawbacks mentioned
our experiments we see that exact inference  ghove as it is guaranteed to be exact, and has the
fcan provide a Qﬁ'” th“p to one BkLEU point ability to easily enforce global constraints through
or sentences of length up o 30 tokens. additional linear constraints. However, efficiency is
usually sacrificed for these benefits.

Integer Linear Programming has previously been
Statistical machine translation (MT) systems typused to perform exact decoding for MT using IBM
ically contain three essential components: (1) Model 4 and a bigram language model. Germann
model, specifying how the process of translation ot al. (2004) view the translation process akin to the
curs; (2) learning regime, dictating the estimation ofravelling salesman problem; however, from their re-
model's parameters; (3) decoding algorithm whichported results itis clear that using ILP naively for de-
provides the most likely translation of an input sencoding does not scale up beyond short sentences (of
tence given a model and its parameters. eight tokens). This is due to the exponential num-

The search space in statistical machine transl&er of constraints required to represent the decod-
tion is vast which can make it computationally proding problem as an ILP program. However, work in
hibitively to perform exact/optimal decoding (alsodependency parsing (Riedel and Clarke, 2006) has
known as search and MAP inference) especiallgemonstrated thatitis possible to use ILP to perform
since dynamic programming methods (such as trefficient inference for very large programs when
Viterbi algorithm) are typically not applicable. Thusused in an incremental manner. This raises the ques-
greedy or heuristic beam-based methods have beé@n as to whether incremental (or Cutting-Plane)
prominent (Koehn et al., 2007) due to their effi-ILP can also be used to decode IBM Model 4 on
ciency. However, the efficiency of such methodgeal world sentences.
have two drawbacks: (1) they are approximate and In this work we show that it is possible. Decod-
give no bounds as to how far their solution isng IBM Model 4 (in combination with a bigram
away from the true optimum; (2) it can be difficult language model) using Cutting-Plane ILP scales to
to incorporate additional generic global constraintsnuch longer sentences. This affords us the oppor-
into the search. The first point may be especiallyunity to finally analyse the performance of IBM
problematic from a research perspective as withollodel 4 and the performance of its state-of-the-
bounds on the solutions it is difficult to determineart ReWrite decoder. We show that using exact in-
whether the model or the search algorithm requireference provides an increase of up to one BLEU
improvement for better translations. point on two language pairs (French-English and

1 Introduction



German-English) in comparison to decoding usin@ Integer Linear Programming
the ReWrite decoder. Thus the ReWrite decoder per- Formulation

forms respectably but can be improved slightly, al- _
beit at the cost of efficiency. Given atrained IBM Model 4 and a French sentence

f we need to find the English sentene@nd align-

Although the community has generally movednenta with maximalp (a,elf) = p(e)-p(a,fle).l
away from word-based models, we believe that dis- Germann et al. (2004) present an ILP formula-
playing optimal decoding in IBM Model 4 lays the tion of this problem. In this section we will give a
foundations of future work. It is the first step in pro-yery high-level description of the formulatidnFor
viding a method for researchers to gain greater ingrevity we refer the reader to the original work for
sight into their translation models by mapping thgnore details.
decoding problem of other models into an ILP rep- | the formulation of Germann et al. (2004) an
resentation. ILP decoding will also allow the incor-gngjish translation is represented as the journey of
poration of global linguistic constraints in a mannex, ravelling salesman that visits one English token
similar to work in other areas of natural languaggnotel) per French token (city). Here the English to-
processing. ken serves as the translation of the French one. A

The remainder of this paper is organised as fof€t Of binary variables denote whether or not cer-
lows: Sections 2 and 3 briefly recap IBM Model 4ta!n _Engllsh token pairs are_dlrectly connected in
and its ILP formulation. Section 4 reviews thethis journey. A set of constraints guarantee that for
Cutting-Plane Algorithm. Section 5 outlines our ex£ach French token exactly one English token is vis-
periments and we end the paper with conclusiorited. The formulation also contains an exponential

and a discussion of open questions for the commdpumber of constraints which forbid the possible cy-
nity. cles the variables can represent. It is this set of con-

straints that renders MT decoding with ILP difficult.

4 Cutting Plane Algorithm

2 1BM Modd 4 ,
The ILP program above has an exponential number

of (cycle) constraints. Hence, simply passing the ILP
In this paper we focus on the translation model gdo an off-the-shelf ILP solver is not practical for all
fined by IBM Model 4 (Brown et al., 1993). Transla- but the smallest sentences. For this reason Germann
tion using IBM Model 4 is performed by treating the€t al- (2004) only consider sentences of up to eight
translation process a noisy-channel model where tigkens. However, recent work (Riedel and Clarke,
probability of the English sentence given a Frenck006) has shown that even exponentially large de-
sentence isP(e|f) = P(f|e) - P(e), whereP(e) is coding problem_s may be solved_ efficiently using ILP
a language model of English. IBM Model 4 definesSolvers if a Cutting-Plane Algorithm (Dantzig et al.,

P(f]e) and models the translation process as a gen?°>4) IS used. _ _

erative process of how a sequence of target words” Cutting-Plane Algorithm starts with a subset of

(in our case French or German) is generated fromtge compl_ete set of constraints. In our case this sub-

sequence of source words (English). set conf[alns all but the (expgnentlally many) cycle
constraints. The corresponding ILP is solved by a

The generative story is as follows. Imagine we

have an English sentence,= eq,...,e; and along 'Note that in theory we should be maximizipge|f). How-

with a NULL word (e,) and French sentencé,= ever, this requires §ummat|on over .a|| possible fillgnmand;

. fertility is d f h lish hence the problem is usually simplified as described here.
fis-o 7_fm' F_'rSt afertility is drawn for each Englis 2Note that our actual formulation differs slightly from the
word (including the NULL symbol). Then, for each original work because we use a first order modelling language
e; we then independently draws a number of Frencthat imposed certain restrictions on the type of constsaatit
words equal ta;’s fertility. Finally we process the 'OWS?; i rentioning that Cuting Plane Aldoriime

. . . is worth mentioning that Cutting Plane Algorithms have
Eng_“_Sh Source_tOkenS in sequence to determine ﬂﬂgen successfully applied for solving very large instandéise
positions of their generated French target Words._ WRavelling Salesman Problem, a problem essentially etgriva
refer the reader to Brown et al. (1993) for full detailsto the decoding in IBM Model 4.



standard ILP solver, and the solution is inspectedentences exactly using ILP. For the remaining 115
for cycles. If it contains no cycles, we have foundand 108 sentences we did not produce a solution due
the true optimum: the solution with highest scordo: (1) the solver not completing within 30 minutes,
that does not violate any constraints. If the solutior (2) the solver running out of memoty.

does contain cycles, the corresponding constraints Table 1 shows a comparison of the results, bro-
are added to the ILP which is in turn solved againken down by input sentence length, obtained on the
This process is continued until no more cycles cafi86 French and 954 German sentences using the ILP

be found. and ReWrite decoders. First we turn our attention to
) the solve times obtained using ILP (for the sentences
5 Evaluation for which the solution was found within 30 min-
In this section we describe our experimental setuptes). The table shows that the average solve time
and results. is under one minute per sentence. As we increase

the sentence length we see the solve time increases,
_ _ ) however, we never see an order of magnitude in-
Our experimental setup is designed to answer se¥rease between brackets as witnessed by Germann
eral questions: (1) Is exact inference in IBM Model 4t ). (2004) thus optimal decoding is more practi-
possible for sentences of moderate length? (2) Howy| than previously suggested. The average number
fast is exact inference using Cutting-Plane ILP3f Cutting-Plane iterations required was 4.0 and 5.6
(3) How well does the ReWrite Decodeperform jterations for French and German respectively with
in terms of finding the optimal solution? (4) DoeS|Onger sentences requiring more on average.
optimal decoding produce better translations? We next examine the performance of the two de-
In order to answer these questions we obtaifgders. Following Germann et al. (2004) we define
a trained IBM Model 4 for French-English andihe Rewrite decoder as finding the optimal solution
German-English on Europarl v3 using GIZA++. Ajf the English sentence is the same as that produced
bigram language model with Witten-Bell smooth-py the |LP decoder. Table 1 shows that the ReWrite
ing was estimated from the corpus using the CMUgecoder finds the optimal solution 40.1% of the time
Cambridge Language Modeling Toolkit. for French and 29.1% for German. We also see the
For exact decoding we use the two models to gelrewrite decoder is less likely to find the optimal so-
erate ILP programs for sentences of length up tRition of longer sentences. We now look at the model
(and including) 30 tokens for French and 25 tokengcores more closely. The average log model error
for Germarr, We filter translation candidates follow- per token shows that the ReWrite decoder’s error is
ing Germann et al. (2004) by using only the top tefyroportional to sentence length and on average the
translations for each wofdand a list of zero fertil- ReWrite decoder is 2.2% away from the optimal so-
ity words.” This resulted in 1101 French and 1062tion in log space and 60.6% in probability space
German sentences for testing purposes. The ILP prgyr French, and 4.7% and 60.9% for German.
grams were then solved using the method described Performing exact decoding increases the BLEU
in Section 3. This was repeated using the ReWritgcore by 0.97 points on the French-English data set
Decoder using the same models. and 0.61 points on the German-English data set with
52 Resllts similar performance increases observed for all sen-

tence lengths.
The Cutting-Plane ILP decoder (which we will refer

to as ILP decoder) produced output for 986 Frenc Discussion and Conclusions
sentences and 954 German sentences. From this
can conclude that it is possible to solve 90% of ou

5.1 Experimental setup

‘%ethis paper we have demonstrated that optimal de-
coding of IBM Model 4 is more practical than previ-

4Available at http://ww i si.edu/  ously suggested. Our results and analysis show that
l'icensed-swrewite-decoder/ exact decoding has a practical purpose. It has al-
These limits were imposed to ensure the Python script gen-
erating the ILP programs did not run out of memory. 8All experiments were run on 3.0GHz Intel Core 2 Duo with
®Based ort(e|f). 4GB RAM using a single core.

"Extracted using the rules in the filter script °These high error rates are an artefact of the extremely small
rewite. nkZeroFert. perl probabilities involved.



Solve Stats BLEU
Len #1 %Eq| Err | Time | Rew| ILP | Diff || Len # %EqSO'VEerrStat%me ReW B'I‘LEFEJ oift

-5 211 8571150 0.7 56.5] 56.2 -0.32 1-5 31| 839 274 08| 40.7| 41.1| 0.44

6-10 | 121 6451 781 147 26112801 1901 5 16 | 175 | 514 107| 17| 19.2] 20.9| 1.72

11-15| 118 | 47.9| 59| 27| 229|237 085

S TS A 29| D] 229 2371 085 1115 242 | 306 | 17.4| 55| 160|167 072
416 9| 20412081 04111 15 50| 257 | 19.1| 14.4| 239 158 159 | 0.16

gé:gg igg gg? gg ]ngé ggg ggg 12; 21-25| 249 | 15.7| 140 | 173.4| 153| 159 | 0.61
- - - : - - 1-25 | 954 | 29.1| 164 | 535 | 16.1| 16.7| 0.61

1-30 | 986 | 40.1| 65| 48.1| 21.7| 22.6 | 0.97 -
(a) French-English (b) German-English

Table 1:Results on the two corpora. Len: range of sentence lengthsjriber of sentences in this range; %Eq: percentage of
times ILP decoder returned same English sentence; Ermgeefifierence between decoder scores per tokén(2) in log space;
Time: the average solve time per sentence of ILP decodeconsis; BLEU ReW, BLEU ILP, BLEU Diff: the BLEU scores of the
output and difference between BLEU scores.

lowed us to investigate and validate the performanca principled and declarative manner to incorporate
of the ReWrite decoder through comparison of thglobal linguistic constraints on the system output.
outputs and model scores from the two decoder3his work lays the foundations for incorporating
Exact inference also provides an improvement isimilar global constraints for translation. We are cur-
translation quality as measured by BLEU score. rently investigating linguistic constraints for IBM
During the course of this research we have erModel 4 and other word-based models in general. A
countered numerous challenges that were not appéisther extension is to reformulate higher-level MT
ent at the start. These challenges raise some interestodels (phrase- and syntax-based) within the ILP
ing research questions and practical issues one mifrstmework. These representations could be more de-
consider when embarking on exact inference usingjrable from a linguistic constraint perspective as the
ILP. The first issue is that the generation of the ILFormulation of constraints may be more intuitive.
programs can take a long time. This leads us to won-
der if there may be a way to provide tighter integra?*Cknowledgements
tion of program generation and solving. Such an inwe would like to thank Ulrich Germann and Daniel Marcu for
tegration would avoid the need to query the modeldeir help with the ISI ReWrite Decoder. This work is partlly
in advance forall possible model components theglﬁgpgtrﬁd by DARPA funding under the Bootstrap Leaming
solver may require. gram.
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