Incremental Integer Linear Programming for Non-projective Dependency Parsing

Sebastian Riedel James Clarke

ICCS, University of Edinburgh

22. July 2006
EMNLP 2006
Labelled Dependency Parsing

Find labelled head-child relations between tokens.
Motivation

Labelled Dependency Parsing

Find labelled head-child relations between tokens.

Example

\[
\text{root} \quad \text{Ik} \quad \text{kom} \quad \text{om} \quad \text{twaalf} \quad \text{en} \quad \text{dan} \quad \text{krijg} \quad \text{je} \quad \text{wat} \quad \text{je} \quad \text{verdient} \\
\text{I'll} \quad \text{come} \quad \text{at} \quad \text{twelve} \quad \text{and} \quad \text{then} \quad \text{get} \quad \text{you} \quad \text{what} \quad \text{you} \quad \text{deserve}
\]
Non-projective Dependency Parsing

Dependencies are allowed to cross
Non-projective Dependency Parsing

Dependencies are allowed to cross

Example

```
omdat  Ik  Anna  Henk  de  nijlpaarden  zag  helpen  voeren
I     Anna  Henk  the  hippo  saw  help  feed
```
Non-projective Dependency Parsing

Dependencies are allowed to cross

Example

```
omdat  Ik  Anna  Henk  de  nijlpaarden  zag  helpen  voeren
  I     Anna  Henk  the hippo  saw  help  feed
```

Methods

- Nivre et al. (2004)
- McDonald et al. (2005)
McDonald et al. (2005)

- State-of-the-art non-projective dependency parser.
- Based on finding the maximum spanning tree.
- Attachment decisions made independently.
McDonald et al. (2005)

- State-of-the-art non-projective dependency parser.
- Based on finding the maximum spanning tree.
- Attachment decisions made independently.

Example Mistake on Alpino Corpus

root Ik kom om twaalf en dan krijg je wat je verdient
I'll come at twelve and then get you what you deserve
McDonald et al. (2005)

- State-of-the-art non-projective dependency parser.
- Based on finding the maximum spanning tree.
- Attachment decisions made independently.

Example Mistake on Alpino Corpus

```
root Ik kom om twaalf en dan krijg je wat je verdient
I'll come at twelve and then get you what you deserve
```

McDonald and Pereira, 2006

- Second order scores
- *Approximate* search
More General

<table>
<thead>
<tr>
<th>Chu-Liu-Edmonds, CYK, Viterbi</th>
</tr>
</thead>
<tbody>
<tr>
<td>- More local models</td>
</tr>
<tr>
<td>- Optimality guaranteed</td>
</tr>
<tr>
<td>- Polynomial runtime guaranteed</td>
</tr>
</tbody>
</table>
More General

<table>
<thead>
<tr>
<th>Chu-Liu-Edmonds, CYK, Viterbi</th>
</tr>
</thead>
<tbody>
<tr>
<td>More local models</td>
</tr>
<tr>
<td>Optimality guaranteed</td>
</tr>
<tr>
<td>Polynomial runtime guaranteed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Beam Search, Sampling</th>
</tr>
</thead>
<tbody>
<tr>
<td>More global models</td>
</tr>
<tr>
<td>Optimality not guaranteed</td>
</tr>
<tr>
<td>Polynomial runtime guaranteed</td>
</tr>
</tbody>
</table>

S. Riedel, J. Clarke (ICCS, Edinburgh)
Motivation

More General

Chu-Liu-Edmonds, CYK, Viterbi
- More local models
- Optimality guaranteed
- Polynomial runtime guaranteed

Beam Search, Sampling
- More global models
- Optimality not guaranteed
- Polynomial runtime guaranteed

Incremental ILP
- More global models
- Optimality guaranteed
- Polynomial runtime not guaranteed
Overview

1. Maximum Spanning Tree Problem
2. Linguistic Constraints
3. Decoding
 - Decoding with Integer Linear Programming (ILP)
 - Incremental ILP
 - Parsing Example
4. Training
5. Experiments
6. Conclusion
Outline

1 Maximum Spanning Tree Problem

2 Linguistic Constraints

3 Decoding
 - Decoding with Integer Linear Programming (ILP)
 - Incremental ILP
 - Parsing Example

4 Training

5 Experiments

6 Conclusion
Maximum Spanning Tree Problem

Example Graph with Scores

MST Objective

Find the tree with the maximum sum of scores
More Formal

Score

\[\begin{align*}
 s(x, y) &= \sum_{(i, j, l) \in y} s(i, j, l) \\
 &= \sum_{(i, j, l) \in y} w \cdot f(i, j, l)
\end{align*} \]

for graph \(y \)
Maximum Spanning Tree Problem

More Formal

Score

$$s(x, y) = \sum_{(i,j,l) \in y} s(i,j,l) = \sum_{(i,j,l) \in y} w \cdot f(i,j,l)$$

for graph y

Constraint (Exactly One Head)

Exactly one head for each non-root token; no head for root
More Formal

Score

\[s(x, y) = \sum_{(i,j,l) \in y} s(i, j, l) = \sum_{(i,j,l) \in y} w \cdot f(i, j, l) \]

for graph \(y \)

Constraint (Exactly One Head)

Exactly one head for each non-root token; no head for root

Constraint (No Cycles)

The dependency graph contains no cycles
More Formal

Score

\[s(x, y) = \sum_{(i,j,l) \in y} s(i, j, l) = \sum_{(i,j,l) \in y} w \cdot f(i, j, l) \]

for graph \(y \)

Constraint (Exactly One Head)

Exactly one head for each non-root token; no head for root

Constraint (No Cycles)

The dependency graph contains no cycles

MST Objective

Maximise score under the two above constraints
Outline

1. Maximum Spanning Tree Problem
2. Linguistic Constraints
3. Decoding
 - Decoding with Integer Linear Programming (ILP)
 - Incremental ILP
 - Parsing Example
4. Training
5. Experiments
6. Conclusion
Linguistic Constraints

Constraint

Coordination arguments must be compatible

Violated in

root Ik kom om twaalf en dan krijg je wat je verdient
I'll come at twelve and then get you what you deserve
Constraint

There must not be more than one subject for each verb

Violated in

root Ik kom om twaalf en dan krijg je wat je verdient
I'll come at twelve and then get you what you deserve
Linguistic Constraints

Constraint

For each *and* coordination there is exactly one argument to the right and one more arguments to the left

Violated in

```
root  Ik  kom  om  twaalf  en  dan  krijg  je  wat  je  verdient
I'll  come  at  twelve  and  then  get  you  what  you  deserve
```
Outline

1. Maximum Spanning Tree Problem
2. Linguistic Constraints
3. Decoding
 - Decoding with Integer Linear Programming (ILP)
 - Incremental ILP
 - Parsing Example
4. Training
5. Experiments
6. Conclusion
Outline

1. Maximum Spanning Tree Problem
2. Linguistic Constraints
3. Decoding
 - Decoding with Integer Linear Programming (ILP)
 - Incremental ILP
 - Parsing Example
4. Training
5. Experiments
6. Conclusion
Decoding

Objective

Maximise:

\[s(x, y) = \sum_{(i,j,l) \in y} s(i,j,l) \]

given

- dependency parsing constraints
- linguistic constraints
Decoding

Objective

Maximise:

\[s(x, y) = \sum_{(i,j,l) \in y} s(i, j, l) \]

given

- dependency parsing constraints
- linguistic constraints

Methods

- Use the Chu-Liu-Edmonds algorithm (McDonald et al., 2005)
- Use some approximate search (McDonald and Pereira, 2006)
- Use Integer Linear Programming (Roth and Yih, 2005)
Decoding

Objective

Maximise:

\[s(x, y) = \sum_{(i,j,l) \in y} s(i, j, l) \]

given

- dependency parsing constraints
- linguistic constraints

Methods

- Use the Chu-Liu-Edmonds algorithm (McDonald et al., 2005)
- Use some approximate search (McDonald and Pereira, 2006)
- Use Integer Linear Programming (Roth and Yih, 2005)
Decoding

Objective

Maximise:

\[s(x, y) = \sum_{(i, j, l) \in y} s(i, j, l) \]

given

- dependency parsing constraints
- linguistic constraints

Methods

- Use the Chu–Liu–Edmonds algorithm (McDonald et al., 2005)
- Use some approximate search (McDonald and Pereira, 2006)
- Use Integer Linear Programming (Roth and Yih, 2005)
Integer Linear Programming (ILP)

Decision Variables

\[x_1, x_2, x_3 \]
Integer Linear Programming (ILP)

<table>
<thead>
<tr>
<th>Decision Variables</th>
<th>Objective Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1, x_2, x_3</td>
<td>$1.5x_1 + 2x_2 - x_3$</td>
</tr>
</tbody>
</table>
Integer Linear Programming (ILP)

Decision Variables

\[x_1, x_2, x_3 \]

Objective Function

\[1.5x_1 + 2x_2 - x_3 \]

Linear Constraints

\[x_1 + x_2 < 2 \]
\[x_1 - x_3 > 1 \]
Integer Linear Programming (ILP)

Decision Variables

\[x_1, x_2, x_3 \]

Objective Function

\[1.5x_1 + 2x_2 - x_3 \]

Linear Constraints

\[
\begin{align*}
 x_1 + x_2 & < 2 \\
 x_1 - x_3 & > 1
\end{align*}
\]

Integer Constraints

\[x_1 \in \{0, 1\} \]

Decoding with Integer Linear Programming (ILP)

Every Markov Network can be mapped to a polynomial-size ILP.

S. Riedel, J. Clark (ICCS, Edinburgh)
Integer Linear Programming (ILP)

Decision Variables
- x_1, x_2, x_3

Objective Function
- $1.5x_1 + 2x_2 - x_3$

Linear Constraints
- $x_1 + x_2 < 2$
- $x_1 - x_3 > 1$

Integer Constraints
- $x_1 \in \{0, 1\}$

ILP Objective
Maximise objective function under constraints.
Integer Linear Programming (ILP)

Decision Variables

\[x_1, x_2, x_3 \]

Objective Function

\[1.5x_1 + 2x_2 - x_3 \]

Linear Constraints

\[\begin{align*}
 x_1 + x_2 & < 2 \\
 x_1 - x_3 & > 1
\end{align*} \]

Integer Constraints

\[x_1 \in \{0, 1\} \]

ILP Objective

Maximise objective function under constraints.

Taskar 2004

Every Markov Network can be mapped to an polynomial-size ILP.
Dependency Parsing with ILP

Decision Variables

\[e_{i,j,l} = \begin{cases}
1 & \text{if there is a dependency from } i \text{ to } j \text{ with label } l \\
0 & \text{otherwise}
\end{cases} \]

for each token \(i, j \) and label \(l \)

Objective Function

\[\sum_{i,j,l} s(i,j,l) \cdot e_{i,j,l} \]
Dependency Parsing with ILP (2)

Auxiliary Variables

\[d_{i,j} = \begin{cases}
1 & \text{if there is a dependency from } i \text{ to } j \\
0 & \text{otherwise}
\end{cases} \]

for each token \(i, j \)
Dependency Parsing with ILP (2)

Auxiliary Variables

\[d_{i,j} = \begin{cases} 1 & \text{if there is a dependency from } i \text{ to } j \\ 0 & \text{otherwise} \end{cases} \]

for each token \(i, j \)

Only One Head

\[\sum_i d_{i,j} = 1 \]

for all \(j > 0 \).
Decoding with Integer Linear Programming (ILP)

Dependency Parsing with ILP (2)

Auxiliary Variables

\[d_{i,j} = \begin{cases}
1 & \text{if there is a dependency from } i \text{ to } j \\
0 & \text{otherwise}
\end{cases} \]

for each token \(i, j \)

Only One Head

\[\sum_{i} d_{i,j} = 1 \]

for all \(j > 0 \).

No Cycles

\[\sum_{(i,j) \in G_s} d_{i,j} \leq |s| \]

for possible subsets all sets \(s \) of tokens

S. Riedel, J. Clarke (ICCS, Edinburgh)
Dependency Parsing with ILP (2)

Auxiliary Variables

\[d_{i,j} = \begin{cases}
1 & \text{if there is a dependency from } i \text{ to } j \\
0 & \text{otherwise}
\end{cases} \]

for each token \(i, j \)

Only One Head

\[\sum_i d_{i,j} = 1 \]

for all \(j > 0 \).

No Cycles

\[\sum_{(i,j) \in G_s} d_{i,j} \leq |s| \]

for possible subsets all sets \(s \) of tokens
Dependency Parsing with ILP (2)

Auxiliary Variables

\[d_{i,j} = \begin{cases}
1 & \text{if there is a dependency from } i \text{ to } j \\
0 & \text{otherwise}
\end{cases} \]

for each token \(i, j \)

Only One Head

\[\sum_i d_{i,j} = 1 \]

for all \(j > 0 \).

No Cycles

\[\sum_{(i,j) \in G_s} d_{i,j} \leq |s| \]

for possible subsets all sets \(s \) of tokens

Germann et al. (2001)

Same cycle problem in ILP formulation for MT
Outline

1. Maximum Spanning Tree Problem
2. Linguistic Constraints
3. Decoding
 - Decoding with Integer Linear Programming (ILP)
 - Incremental ILP
 - Parsing Example
4. Training
5. Experiments
6. Conclusion
Incremental Integer Linear Programming

Setup

- base (e.g. exactly one head) constraints
- incremental (e.g. no cycles) constraints
Incremental Integer Linear Programming

Setup

- *base* (e.g. exactly one head) constraints
- *incremental* (e.g. no cycles) constraints

Algorithm (see Warme (2002))

Set up ILP I with objective function and *base* constraints

```
repeat
    Solve $I$
    Find violated *incremental* constraints
    Add constraints to $I$
until No more constraints violated
```
Incremental Integer Linear Programming

Setup

- *base* (e.g. exactly one head) constraints
- *incremental* (e.g. no cycles) constraints

Algorithm (see Warme (2002))

Set up ILP I with objective function and *base* constraints

repeat

 Solve I
 Find violated *incremental* constraints
 Add constraints to I

until No more constraints violated

Tromble and Eisner (2006)

Replace ILP with finite-state automata
Outline

1. Maximum Spanning Tree Problem
2. Linguistic Constraints
3. Decoding
 - Decoding with Integer Linear Programming (ILP)
 - Incremental ILP
 - Parsing Example
4. Training
5. Experiments
6. Conclusion
Example Sentence

root Ik kom om twaalf en dan krijg je wat je verdient
I'll come at twelve and then get you what you deserve
First Solution

"Ik kom om twaalf en dan krijg je wat je verdient"

I'll come at twelve and then get you what you deserve
Add Violated Constraints

root Ik kom om twaalf en dan krijg je wat je verdient
I'll come at twelve and then get you what you deserve

Add Constraint

\[d_{what, and} + d_{and, get} + d_{get, what} < 3 \]
Next Solution

root: Ik kom om twaalf en dan krijg je wat je verdient
I'll come at twelve and then get what you deserve
Add Violated Constraints

Add Constraint

\[d_{\text{and}, \text{at}} + d_{\text{and}, \text{get}} < 2 \]
root Ik kom om twaalf en dan krijg je wat je verdient
I'll come at twelve and then get you what you deserve
Outline

1. Maximum Spanning Tree Problem
2. Linguistic Constraints
3. Decoding
 - Decoding with Integer Linear Programming (ILP)
 - Incremental ILP
 - Parsing Example
4. Training
5. Experiments
6. Conclusion
Training

Online Learning

1. Single-best MIRA
2. Chu-Liu-Edmonds for parsing (McDonald et al. 2005)
3. No constraints
Online Learning

1. single-best MIRA
2. Chu-Liu-Edmonds for parsing (McDonald et al. 2005)
3. No constraints

Roth and Yih (2005)

Training without constraints can actually help
Outline

1. Maximum Spanning Tree Problem
2. Linguistic Constraints
3. Decoding
 - Decoding with Integer Linear Programming (ILP)
 - Incremental ILP
 - Parsing Example
4. Training
5. Experiments
6. Conclusion
Experiments

Questions

- How accurate in comparison to McDonald et. al (2005)?
- How fast/slow?
Experiments

Questions

- How accurate in comparison to McDonald et. al (2005)?
- How fast/slow?

Data

- Dutch alpino corpus from the CoNLL shared task 2006
- about 13000 Sentences, non-projective, 5% of edges crossing
- Split into development set and crossvalidation set
- Tuned feature and constraint set on dev set
Experiments

Accuracy

In Comparison with McDonald et. al (2005)

<table>
<thead>
<tr>
<th>Crossvalidation</th>
<th>Labelled</th>
<th>Unlabelled</th>
<th>Complete</th>
<th>Complete (U)</th>
</tr>
</thead>
<tbody>
<tr>
<td>McDonald 2005</td>
<td>84.6%</td>
<td>88.9%</td>
<td>27.7%</td>
<td>42.2%</td>
</tr>
<tr>
<td>Incremental ILP</td>
<td>85.1%</td>
<td>89.4%</td>
<td>29.7%</td>
<td>43.8%</td>
</tr>
</tbody>
</table>

Statistical significant ($p < 0.001$ for Sign test and Dan Bikel’s parse eval script)
Experiments

Accuracy

In Comparison with McDonald et. al (2005)

<table>
<thead>
<tr>
<th>Method</th>
<th>Labelled</th>
<th>Unlabelled</th>
<th>Complete</th>
<th>Complete(U)</th>
</tr>
</thead>
<tbody>
<tr>
<td>McDonald 2005</td>
<td>84.6%</td>
<td>88.9%</td>
<td>27.7%</td>
<td>42.2%</td>
</tr>
<tr>
<td>Incremental ILP</td>
<td>85.1%</td>
<td>89.4%</td>
<td>29.7%</td>
<td>43.8%</td>
</tr>
</tbody>
</table>

Statistical significant ($p < 0.001$ for Sign test and Dan Bikel’s parse eval script)

With Others

- Wins on CoNLL test set but not significantly better than McDonald et al. (2006)
- Similar to performance of Malouf and van Noord (2004) (84.4%, smaller training set, evaluates control relations)
Runtime Evaluation

Exact Inference

- reasonable fast (0.5s for sentences with length between 20 - 30 tokens)
- significantly slower than McDonald et al. (2005) (3ms!)
- 150 times slower when parsing the full corpus (50min vs 20s) without feature extraction
- 6 times slower with feature extraction (add 10 minutes)
- 2 times slower with nearly loss less approximation method (see paper)
Outline

1 Maximum Spanning Tree Problem
2 Linguistic Constraints
3 Decoding
 - Decoding with Integer Linear Programming (ILP)
 - Incremental ILP
 - Parsing Example
4 Training
5 Experiments
6 Conclusion
Conclusion

Accuracy

- Significantly better than McDonald et. al (2005)
- headroom left - rule engineering
Conclusion

Accuracy
- Significantly better than McDonald et. al (2005)
- Headroom left - rule engineering

Runtime
- Significantly slower than McDonald et. al (2005)
- Feature extraction dominates runtime
- Almost loss-less approximation available
Conclusion

Accuracy
- Significantly better than McDonald et. al (2005)
- Headroom left - rule engineering

Runtime
- Significantly slower than McDonald et. al (2005)
- Feature extraction dominates runtime
- Almost loss-less approximation available

In General
- Allows global models
- Guarantees optimality
- No polynomial runtime guarantee
- Good scores - fast processing
Future Work

Parsing
- 2nd order features
- Evaluate on more languages
- Joint POS tagging and parsing
- Joint constituent and dependency parsing

General
- Other applications (Collective IE, MT?)
- Generalise to features/potentials (as opposed to constraints)
- Theoretical runtime estimates
Thank you