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Abstract

In this thesis we develop models for sentence compressibis téxt rewriting task

has recently attracted a lot of attention due to its relegdocapplications (e.g., sum-
marisation) and simple formulation by means of word defetiBrevious models for
sentence compression have been inherently local and tits¢apture the long range
dependencies and complex interactions involved in textitey. We present a solu-
tion by framing the task as an optimisation problem with laaad global constraints
and recast existing compression models into this framewdskng the constraints we
instill syntactic, semantic and discourse knowledge théatsotherwise fail to cap-
ture. We show that the addition of constraints allow rek§isimple local models to
reach state-of-the-art performance for sentence conmipress

The thesis provides a detailed study of sentence compreasio its models. The
differences between automatic and manually created casiprecorpora are assessed
along with how compression varies across written and spaégnh We also dis-
cuss various techniques for automatically and manualljuetiag compression output
against a gold standard. Models are reviewed based on g®ingtions, training re-
quirements, and scalability.

We introduce a general method for extending previous ammesto allow for
more global models. This is achieved through the optinosaiamework of Integer
Linear Programming (ILP). We reformulate three comprassimdels: an unsuper-
vised model, a semi-supervised model and a fully supennsedel as ILP problems
and augment them with constraints. These constraints tuiéive for the compression
task and are both syntactically and semantically motivatéel demonstrate how they
improve compression quality and reduce the requirementsagring material.

Finally, we delve into document compression where the tagk icompress ev-
ery sentence of a document and use the resulting summaryegdagement for the
original document. For document-based compression wesfigage discourse infor-
mation and its application to the compression task. Twoalisse theories, Centering
and lexical chains, are used to automatically annotaterdeats. These annotations
are then used in our compression framework to impose additiconstraints on the
resulting document. The goal is to preserve the discoursetste of the original doc-
ument and most of its content. We show how a discourse infoicoenpression model
can outperform a discourse agnostic state-of-the-art inieg a question answering
evaluation paradigm.
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Chapter 1
Introduction

This thesis is concerned with the task of sentence compresSentence compression
is often considered a subtask within automatic summaoisatin its simplest form it
can be viewed as producing a summary of a single sentence. chiapter presents
motivation for the task and how it differs from other summsation tasks. The chapter
concludes with a summary of the thesis and its main contdbsat

1.1 Automatic Summarisation

The field of automatic summarisation has traditionally beeminated by extrac-
tive summarisation. Extract summaries are summaries somgientirely of material

copied from a source document. This is in contrast to akiss@mmaries where at
least some of the material is not present in the source dotunfbstracts tend to

contain paraphrases and offer higher degrees of condensati short abstract may
contain more information than a longer extract.

In extractive summarisation the units of text that are deemest representative of
the document are selected and then concatenated verbgethéo to form a summary.
Sentences are typically used as the unit of text, howevepibssible to use paragraphs
or clauses too (Mani 2001). A large body of work has focusedhenselection pro-
cess using features such as: position in document, keywegdéncy, sentence length
and sentence similarity or dissimilarity within the docurhésee Mani (2001) for an
overview).

Performing sentence extraction alone can lead to incoharehfragmented sum-
maries, as the context of each sentence is not considergjdine extraction process;
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this is especially true in multi-document summarisatiomere sentences from many
documents may be concatenated. The problem of producinigeaeat summary given
a set of extracted sentences has received some attentiommarisation. For exam-
ple, Mani et al. (1999) have looked at revising single doconextracts with the aim
of making them more readable. By way of rendering the sumnemy repetitive they
remove extraneous constituents such as relative clauggzepositional phrases. An-
other example are Jing and McKeown (1999) who propose to gntbe extracts with
operations such as sentence compression, sentence ctiorbaral syntactic transfor-
mations. Redundancy also poses challenges to multi-dagusnenmarisation. Again
systems often include a component that deals especiallythis problem (Barzilay
et al. 1999).

Generating abstractive summaries is a complex and diffiask. Abstractive sum-
marisation systems often perform sentence compressidrgny to help produce a
coherent summary, but also to remove any redundancy frorsutnenary. This is typ-
ically done through manually written rules for compresgiBarzilay et al. 1999; Mani
et al. 1999). Thus recently research emphasis has shiftetds sentence compres-
sion which is an integral part of summarisation systems. @rfoblem is studied in its
own right which removes the other factors of summarisatian,(sentence selection).
Sentence compression is considerably simpler than futkadtson but still provides
many of the same challenges facing document summarisation.

1.2 Sentence Compression

Sentence compression can be viewed as producing a summargiofle sentence.
Instead of being given a document, or collection of docuseartd asked to produce
a summary (either extract or abstract) we are given a seatincompress. The com-
pressed sentence should retain the most important infamand remain grammatical
while using fewer words than the original source sentencéhotigh compressing a
sentence may seem a relatively trivial task, performingiibenatically is not.
Sentence (1-a) can be compressed to form sentence (1-1g,(24b) and (2-c) are

two possible compressions of (2-a).

(1) a. Prime Minister Tony Blair today insisted the case foldmg terrorism
suspects without trial was “absolutely compelling” as theeynment pub-

IMutli-document summarisation is concerned with creatirsingle summary using multiple docu-
ments about the same event or topic.
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(2) a.

lished new legislation allowing detention for 90 days withoharge.
Tony Blair has insisted there is a “compelling” case fowlyepublished
legislation allowing terror suspects to be held withouil tra

David Cameron’s bid for the Conservative leadershigivec a double
boost today in the form of endorsements from the party’s nsestior
woman, Theresa May, and Bernard Jenkin, a figure from the fighy.
Theresa May and Bernard Jenkin endorsed David Camerahfstiory
leadership.

David Cameron’s bid for Tory leadership gets support frartyls most
senior woman and figure from Tory right.

These two examples demonstrate that sentence compreasabress determining what

information is important and how to convey it. This can irn@tomplex text rewriting

operations which include: word reordering, deletion, silsson and insertion. Ide-

ally a sentence compression algorithm will have all theserafpons at its disposal.

However, much of the current research in the sentence casipreliterature has sim-

plified the problem to the removal of words from the originahtence. Examples of

this can be seen in sentences (3-b) and (4-b).

@) a
b
4 a
b.

Prime Minister Tony Blair today insisted the case folding terrorism
suspects without trial was “absolutely compelling” as tbeeynment pub-
lished new legislation allowing detention for 90 days withoharge.
Tony Blair insisted the case for holding terrorism suspedthout trail
was “compelling”.

David Cameron’s bid for the Conservative leadershigivecd a double
boost today in the form of endorsements from the party’s nsesiior
woman, Theresa May, and Bernard Jenkin, a figure from the riginy.
David Cameron’s bid for leadership received a boost in trenfof en-
dorsements from Theresa May and Bernard Jenkin.

Over the last few years there have been numerous papersipedhion sentence com-

pression, however the task itself remains poorly definedchviaf the current work in

the literature focuses on one particular instantiationhef compression task — word

deletion. Given an input source sentence of wotds X1, X, ...,Xn, & COmpression

is formed by dropping any subset of these words (Knight andci2002). Good
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compressions are those which:

¢ use fewer words than the source sentence,
e retain the most important information from the source secde

e remain grammatical.

A similar definition is provided by Jing (2000), who stateattthe goal of sentence
compression is “to reduce without major loss”. This entegisioving as many extra-
neous phrases as possible from a sentence without degrdaiim the main idea the
sentence conveys. In this definition the notion of imporgaisadependent on the topic
of the sentence.

Our own definition of sentence compression is broader. #atlg from Sparck-
Jones’s (1998) definition of a summary, we formulsé@tence compressias atrans-
formation of a source sentence through information redurctnd/or paraphrasing
with respect to what is important in the sourcéhe information that is important in
the source is a very subjective concept. Assuming that seateompressions are gen-
erated with a user in mind, the notion of information conteilitdepend upon: (1) the
user’s background knowledge, (2) their information neead] €) their compression
requirements.

Background Knowledge Background knowledge is one of the most important fac-
tors influencing how to compress a sentence. For exampleniiesces (3-a) and (4-a)
if the user is aware that Tony Blair is the Prime Minster andiD&ameron is a Con-
servative then we can produce compressions (3-b) and (@spgctively, with little or
no information loss.

The users’s background knowledge can vary from genera) {he knowledge we
assume an average person has accumulated from life expesieto domain specific
knowledge. Another form of background knowledge is the rimfation gained while
reading a document. For example, documents tend to corgdiumdant information.
On the first mention of a novel fact we may decide not to remoyvéawever on
subsequent mentions, we can consider it redundant infaymakhus, the document’s
content will also influence compression.

Information Need  The information need of a user provides us with an idea of iwhic
information to present in the compression. For example,uger could require that
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compressions contain information related to certain kegnevor people they are in-
terested in. This would be similar to query-focused sumsagiorf. Another scenario
would be presenting compressions of one document in relatia reference docu-
ment. For example, the reference document may be a newkastican event, and
here, when a compression system is presented a new documeecdrnpressions it
generates should present new information not found in tfezerce document.

There are many different configurations of information ne&krhaps the most
general information need concerns the document as a whdle@m compressed sen-
tences relate to its main topic.

Compression Requirements The final aspect affecting the compression are the re-
quirements which are not user specific. For example, a hypioti compression sys-
tem may be faced with physical limitations. In such a caseefare compressing
sentences to be displayed on small screens, a strict lengthriay be imposed which
must not be exceeded. Other compression requirements mapigegeneral such as
transforming complex wordy and technical sentences inbotshsentences which are
simpler and less technical.

Exploring all these different compression factors is beytime scope of this the-
sis. Here, we limit ourselves to the simple instantiatiorseftence compression as
word deletion. We will assume a hypothetical user requiresrapression that takes
into account general background knowledge and will not ifigally account for the
individual user’s information need. Therefore, we aim teate compressions from a
document that relate to the main topic or topics of the docuime

1.3 Applications of Sentence Compression

Thus far we have motivated sentence compression from amatitosummarisation
standpoint. Beyond summarisation, sentence compresa®ia lwide variety of use-
ful applications on its own. Subtitles for television pragrmes can not be typically
created using speech transcripts verbatim as the rate etkpg usually much higher
than the rate at which words can be displayed on the screda ldeping the text and
picture in synchronisation. Thus, sentence compressinrbeaused to automatically

2The goal of query-focused summarisation is to produce a sammhich is directed by a user’s
guery expressing their information need.
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generate subtitles (Vandeghinste and Pan 2004), in whailmaant or less important
information can be missed while retaining the main argunogmiremise of the pro-
gramme.

One of the first applications proposed for sentence comiores&ss audio scanning
devices for the blind (Grefenstette 1998). Sighted readgnseasily and quickly scan
over a page or document and understand the topic being ded¢uBlind readers, who
read documents via a reading machine which produces audputoicannot easily
navigate a document quickly. To do this, a blind reader cdg speed up or slow
down the audio. If reading machines contained a sentenc@ression module, the
amount of compression could be controlled via a knob andrallbéader could scan a
document in a similar manner to sighted readers.

Another application is compressing text to be displayedmalkscreens (Corston-
Oliver 2001). In many cases reading full documents or emaésages on a small
screen such as a mobile phone or PDA is impractical.

1.4 Contributions

This thesis contributes to the sentence compression tabk ifollowing ways:

e We study the compression task by assessing how humans cssrg@stences.
Previous work has concentrated on automatically generatetpression cor-
pora. We focus on human authored compressions of spoken rttelwvtext and
show that these compressions are radically different tedlubtained automati

cally.

o We reformulate and extend three compression models in tegénLinear Pro-
gramming (ILP) framework which allows us to examine how daaists influ-
ence the compression task. The three models cover the speofrlearning
paradigms: unsupervised, semi-supervised and fully sigest. ILP provides
us with exact inference even in the face of constraints.

e Under the ILP framework, we introduce several novel andiiiviel constraints
for the compression task. The constraints instill addaiosyntactic, semantic
and discourse knowledge the models otherwise fail to capitve show that the
constraints allow relatively simple models to reach stHtée-art performance
for sentence compression.
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e We extend our module from sentence compression to docuno@mpression.
In order to perform document compression we formulate a sbimethod for
automatically annotating discourse information using ttxeories of discourse,
Centering Theory and lexical chains. Using this informataminstill discourse
information into a compression model through ILP constsairOur discourse
enhanced model conserves the core content of documentspehienming doc-
ument compression better than state-of-the-art discaagsestic compression
systems.

e Finally, we assess the evaluation of sentence compresstpegifically we de-
scribe two judgement elicitation studies for comparingtesys compressions.
The first considers sentences in isolation where judgesoatgressions in two
dimensions: grammaticality and importance. The secondimerned with
document compression evaluation and follows a questiemanng paradigm
where the content of the compressions is evaluated witledetence to the orig-
inal document material. We also study automatic evaluatieasures and show
that F-score over the grammatical relations between gaiddstrd and system
compressions can be used since it correlates reliably witham judgements.

1.5 Thesis Overview

The remainder of this thesis is structured as follows:

e Chapter 2 introduces previous approaches to the sentenqaession task. We
give details of several fully supervised methods which carsgiit broadly into
generative models and discriminative models. Semi-sugenly unsupervised
and less data intensive models are also examined. We susenpaevious eval-
uation studies which give us insight into the performancehef models and
motivate why current approaches are not completely satsfa

e Chapter 3 focuses on the analysis of human authored sentengaressions.
Specifically, we show that automatically collected comgpi@s corpora differ
significantly from human authored compression corpora. rideutake this anal-
ysis we create two human authored compression corpora d&es@nd written
news text. These corpora differ from those previously améd as they contain
compressed sentences of complete documents or news shargeallowing us
build models that compress entire documents.
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e Chapter 4 is concerned with methods for evaluating sentemrg@Ession sys-
tems and fleshes out the evaluation techniques we adopsitntdsis. We present
a variety of methods for automatically and manually evahgatompressions.
We outline the problems of current elicitation studies amal/le a more rigor-
ous paradigm for evaluating compressed sentences inimolat/e also assess
whether the proposed automatic evaluation measures aablsuior the task by
correlating their scores with human judgements. Finallg, present a method
for evaluating document compressions through a questism@ring paradigm.

e Chapter 5 introduces the frameworks of linear programming)(and integer
linear programming (ILP). These are two flexible framewdksmodelling var-
ious optimisation problems. We provide an overview of how lhas previously
been used within natural language processing as a motMaiitor for choosing
the framework.

e Chapter 6 reformulates and extends three sentence congressdels in the
ILP framework. We introduce a set of linguistically and semizally motivated
constraints which are designed to bring less local syrmtdetowledge into the
models and help preserve the meaning of the source sentetieedompression.
We investigate the influence of our constraint set acrossetscahd learning
paradigms; in particular how the performance of superyisemi-supervised
and unsupervised models is impacted by constraint-basectice.

e Chapter 7 is concerned with document compression (wheremtiéaces within
a document are compressed). Central to our approach is thef ukscourse-
level information which we annotate automatically. Our @tation algorithms
are robust and complementary. They are inspired by two igigutheories relat-
ing to local coherence, Centering Theory and lexical colmesaad provide our
model with important information for document (as opposeddntence) com-
pression. This information is instilled into our model ugia set of discourse
constraints designed to preserve coherence of the origmaiment and also
provide information about which entities are important.

e Chapter 8 summarises the major contributions of this workdisdusses future
research directions.
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1.6 Published Work

Some of the material presented in this thesis has been patlihapter 3 and Chap-
ter 4 expands on the material in Clarke and Lapata (2006b) dyiging more details
of the corpus annotation method, variations across corpodaanalysis of the nature
of compressions.

Chapter 5 and Chapter 6 is related to the work in Clarke and Lgpa@6a, 2008).
In particular, Chapter 5 contains a good introduction todetd_inear Programming,
how it relates to other methods such as constraint prograg@nd reranking; and
its previous use within natural language processing. Chdptontains additional
information on the parameter estimation and Chapter 4 cdwergvaluation method
in more detail.

Finally, some of the work in Clarke and Lapata (2007) is désatiin Chapter 4
covering the evaluation methodology in more detail and Géaptwhich discusses
various approaches to incorporating discourse informaitido models and provides
full details of how we obtain our discourse annotations egtcally.






Chapter 2
Overview of Compression Models

In this chapter we examine the computational treatment mepee compression. A
wide variety of methods have been proposed in the literaitvieereview these methods
concentrating on the training requirements of each appro&ome methods require
rich linguistic annotations of sentences such as parss &me@dependency trees; while
other methods rely on very little linguistic knowledge swuahpart-of-speech tags or
merely the lexical items alone.

Current approaches are split into two broad classes: daadive and data lean.
The data intensive approaches usually follow a supervisaching paradigm and re-
quire a parallel corpus of (source sentence, compresséeise) pairs which are used
to learn the rules of compression. Data lean approachediyibage some generalisa-
tion of compressed sentences so that without learning fipedies, they incorporate
knowledge with respect to compression. The data lean a&lhgosi are typically unsu-
pervised and applied with little or no prior learning fromarallel corpus.

Supervised learning aims to learn a function that maps frgmoiisx € X to out-
putsy € . Many natural language processing tasks can be framed tssgapping.
For example, in machine translati@rcould be a French sentence anid the English
translation. In sequence labelling tasks such as parp@eéch taggingx is a sentence
andy is the corresponding part-of-speech sequence. In the ¢asntence compres-
sionx € X is a source sentence agdt 9 its corresponding compression. Here the
task is viewed as developing a mapping frahto 9" that retains important information
from the source sentence and provides a grammatical cosipres

We first introduce data intensive treatments of the comprasssk. Next we
progress to more data lean methods and conclude the chajpteawliscussion of

previous compression models.

11
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2.1 Generative Approaches

Generative approaches have received a considerable amioattiention in the com-
pression literature. The generative models typical egértige joint probabilityP(x, y)

of a source sentencehaving the target compressignOne appealing aspect of these
models is their simplicity to train. Parameters are estgdaising simple functions
of counts of various compression operations obtained frgrarallel corpus of source
sentence and target compression pairs.

The initial generative models were inspired by the modeédus machine trans-
lation. Machine translation has natural parallels with ¢benpression task. In trans-
lation the goal is to translate a document fromaaurcelanguage into anothdarget
language. The machine translation community focus on miadgunodels that trans-
late between sentences. Probabilistic models are trainedigned sentence-sentence
pairs from which the model must learn word or phrase alignishand word or phrase
translations.

Sentence compression can be viewed as a machine tranglabiolem where in-
stead of translating between languages we are translagimgelen original source sen-
tences and target compressed sentences. Thus the sambilptbapproach and
model can be applied — the noisy-channel model.

Next we review the noisy-channel model in general and howstlieen applied to
sentence compression (Knight and Marcu (2002); Turner aradr@k (2005)). We
then discuss some of the shortcomings of this model.

2.1.1 The Noisy-channel Model

The noisy-channel model has been used successfully in etyaf natural language
processing applications including speech recognitiotingle 1997), part-of-speech
tagging (Church 1988) and machine translation (Brown et393).

Rather than directly modelling probability of the targetngaression given the
source sentence?(y|Xx), the noisy channel model breaks the probability iR(y) -
P(x]y), the goal to find the best compressignthen becomey* = argmaxP(y) -
P(X]y)-

This corresponds to three components (see Figure 2.1 foaMispresentation):

e The channel moddP(x|y) — the conditional probability of the source sentence
given the target compression. This is responsible for capjitthe operations
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Source-Target English
Compression Corpus Sentences

Original Source Ungrammatical Target Compressed
Sentence (X) g Compression Sentence (y)

Channel Model Language Model

N 7
N ’

a
Decoder
argmax P(y)*P(xy)

Figure 2.1: The noisy-channel model.

which transform the compression into the source sentence.

e The language modét(y) — gives us the probability of the compression occur-
ring. In this model we want grammatical compressions to es¢ogher than
ungrammatical ones.

e The decoder — searches for the best compressed sentenndlgiv&urce sen-
tence by maximising(y) - P(x|y).

Sentence compression within the noisy-channel framewarkbe viewed as fol-
lows: given a source sentence we must imagine that it wasaoompressed sentence
which has had additional (and optional) text added to it. idiee in the model corre-
sponds to the additional text present in the long string.

A parallel corpus is required to learn the probability esties of the channel model
(P(X]y))-

Knight and Marcu (2002) first proposed using the noisy-clehapproach for sen-
tence compression and since then it has been extended bgrBumth Charniak (2005).

2.1.2 Knight and Marcu's Compression Model

Knight and Marcu (2002) propose a probabilistic approadhgughe noisy-channel
model for sentence compression. Their source and chanrd#lsiact on parse trees
rather than words, and this differs from previous work usstagistical channel models
for caption generation which are solely word-based (Witkrand Mittal 1999). Their
goal is to take a large tree and rewrite it into a smaller trédewetaining the word



14 Chapter 2. Overview of Compression Models

y = S ((NP John)
(VP (VB saw)
(NP Mary)))

is assigned the score:

Py) = Peig(TOP— S| TOP)-Peg(S— NP VP|S)-
Pctg(NP — John| NP) - Petg(VP — VB NP | VP) -
Peig(VB — saw| VB) - Pesg(NP — Mary | NP)-
Poigram(John| EQS) - Pyigram(saw| John -
Phigram(Mary | saw) - Pyigram(EOS| Mary)

Figure 2.2: Example of the source model as introduced by Knight and Marcu (2002)

ordering of the source tree. The language model is concevitedreating target com-
pressionsy, that look grammatical; while the channel model has the ¢gkeserving
the important meaning between source sentexaad compressed sentences.

For the language model, a good compressed tree is one thatri@mal-looking
parse structure and a high bigram score. TR(® is computed using a combination
of a probabilistic context-free grammar (PCFG) score (whg&leomputed over the
grammar rules that yielded the trgdrom x) and the bigram score for the leaves of
the tree. Knight and Marcu (2002) note that the probabilgsignments made by the
source model do not sum to one as they are counting the costcbf word twice.
Figure 2.2 shows the score for the target compressed sentéolen saw Mary”.

The channel model performs minimal operations on the cossgie sentence to
produce the source sentence. The model probabilisticaliypses an expansion tem-
plate, which are synchronous context free grammar (SCF@gridr each internal
node iny, based on the labels of the node and its children. For exargplen the
structure S— NP VP, the channel model may grow this inte-SNP VP PP with the
probability of Pexpf(S — NP VP PP| S — NP VP). It could also choose not to grow it
at all, with probabilityPexy(S — NP VP| S — NP VP) or grow it into another structure
with a probability framed in a similar way. If a new node is @rg the subtree is also
grown with probabilities given by the PCFG factorisationwhaon Figure 2.2 (without
taking the bigram probabilities into account; oy g).
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A parallel corpus is used to train the models’ parameterghEgde of the corpus
is parsed with Collins’s (1997) parser. The parses are useatetdify corresponding
syntactic nodes which provide a frequency count of jointésesuch as (S> NP VP,

S — NP VP PP). These joint counts can be normalised to prd¥ge The PCFG and
bigram language model are estimated from the Penn Treebahkrsannotated Wall
Street Journal respectively.

The decoder selects the trees with the best combinatiorecddbrce and channel
scores. This is achieved by creating a packed parse forest pbssible compres-
sions that are grammatical according to the Penn Treeb&alkcdmpression has zero
expansion probability with respect to the training data &ssigned a very small prob-
ability. A tree extractor then collects the sentences whth highesP(y|x) score. It
returns a list of trees that correspond to the best commnedger each possible com-
pression length with their corresponding log-probalabti Knight and Marcu (2002)
observed that if they rely on the log-probability to seldw best compression, they
almost always select the shortest compression. To avadhbkilog-probabilities are
normalised by the compression length, thus rewarding loogepressions.

Their noisy-channel based approach was tested on the ZiffsSizorpus (details of
which are provided in Chapter 3) and gives a compression fapmroximately 70%
compared to a human authored compression rate of 53%. Aibassistem using
a bigram language model provides a compression rate of 64%enVeéhaluated by
human judges the noisy-channel model's compressiondfisigmily outperformed the
baseline compression but proved to be significantly worae the human authored
compressions.

2.1.3 Turner and Charniak’s Extensions

Turner and Charniak (2005) extend the noisy-channel moaggsed by Knight and
Marcu (2002) by modifying the language model and channelghotheir most sig-
nificant change is the substitution of the language modetaRéhat the latter con-
sists of a probabilistic context free grammar (PCFG) scomédltermines if the parse
structure is normal looking and a bigram language models THrniguage model is sub-
stituted with a syntax-based language model following Cla&r(2001). More specif-
ically the language model is an “immediate-head” parset toaditions all events
below a constituent upon the head d.

A slight modification to the channel model is made giviBK|y) = Pexp(X|y) -
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Peleted WherePyeleteqiS the probability of adding the deleted subtrees back inéo t
compression to give the original source sentence. Thissig astimated using the
syntax-based language model. Turner and Charniak (2005ptcequire a packed
parse forest for the decoding process as they limit theilesyto only generate com-
pressions for original sentences for which they have rulBsus if they have never
seen the original sentence they do not generate a compresgihile Knight and
Marcu (2002) required a parameter to discourage compmessioner and Charniak
(2005) found the opposite true; their system did not naly@ioduce compressions
therefore a parameter was added to encourage compression.

One of the biggest problems with the noisy-channel apprt@shntence compres-
sion is the lack of training data. To alleviate this, Turned&harniak (2005) added
manually crafted rules and approximated other rules (froffiergnt corpora). They
added a selection afpecial rulesvhich could not be modelled using the simple chan-
nel model. These rules are structurally more complicatexh @5 the rule NP(1)-
NP(2) CC NP(3), where the parent has at least one child witkdhee label as itself;
then the resulting compression is one of the matching dmldfor example NP(2).
Constraints were also added to never allow the deletion ofnagptement without its
syntactic parent. A similar constraint was applied to nobrapes.

It is possible to estimate the channel model without a palrabirpus. In this un-
supervised versioRexp(X|y) is estimated from the first section of the Penn Treebank
while Pyelete remains the same as it is obtained from the language modek i§h
achieved by matching the PCFG expansions with similar rubesioing in the Penn
Treebank. A rule must be svo(shorter version of) the PCFG expansion for it to be
considered a match. Whesgois defined as:

SVo rp svory if and only if the right hand side af; is a subsequence of the right hand
side ofra.

This unsupervised version is then restricted to generatorgpressions provided
the head of any subtree is not deleted; thus reducing the auofipoor compressions.

All these changes are merged together to produce a varietpdéls. They present
a series of models, one of which uses the special rules arsdraorts when appropri-
ate and only relies on the unsupervised compression pritieif there are no prob-
abilities under the supervised model. This model outperfthe original model by
Knight and Marcu (2002) and provides a compression rate @ @ompared to 70%
for Knight and Marcu’s model).
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2.1.4 Discussion of the noisy-channel model

Turner and Charniak (2005) point out a fundamental probleth Wie noisy-channel
model as discussed above for sentence compression. THeprmxhe following: the
probability of a constituent being deleted is far lower thiaat of the constituent being
left in. Thus, the most probable compression should be a&eseatwhich is barely
compressed if at all. To make this assertion firmer we willdelthe reasoning made
in Turner and Charniak (2005).

If we state the noisy-channel model more explicitly as Exqua2.1):

P(x) = arg mca>P(y, L=y|x,L=x)
= argma(y,.L=y) P(xL=xy,L =y) (2.1)

where the eventls = y andL = x explicitly state that the sentence is target compression
or original source respectively. Then in order to give thaapnP(y) - P(x|y) in the
current formulation, we must assume:

P(y,L=y) = P(y) (2.2)
P(x,L=xly,L=y) = P(x]y) (2.3)

Thus we are assuming that the probabilityafs a target compression is simply its
probability of being a sentence. This should not be the gasemtence compression.
Ideally the probability ofy being a compression should be calculated with respect to
a set of compressed sentences rather than the set of alsErsgintences. Whereas
the probability ofx being a source sentence should be calculated against tbeadket
English sentences (of which compressed sentences will bbsef as any sentence
can be considered a source sentence. However, we do not tege &nough corpus
of compressed sentences to estim@tg L = y) reliably thus we must assume that
Equations (2.2) and (2.3) hold.

These assumptions eventually undermine the whole compregsocess; i.e., the
probability of deleting constituents is far lower than lewythem in (Turner and Char-
niak 2005). Thus, a weighting factor to aid compression deadwhen the source
model is a syntax language model. If the source model casist PCFG probability
model and a bigram language model, then this weighting fastoot required, as we
are paying the probabilistic price twice for including a Wdponce in the PCFG and
once in the bigram).
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2.1.5 Lexicalized Markov Grammars

Galley and McKeown (2007) present another generative agpréo sentence com-
pression which addresses some of the deficiencies of previmdels, most notably
the sparseness issues encountered through lack of trad@itegy This is achieved
through a head-driven Markovization of synchronous canrtee grammar (SCFG)
compression rules. The Markovization provides severaebenincluding the ability
to condition deletions on a flexible amount of syntactic eahtto treat head-modifier
dependencies independently, and to lexicalize SCFG primhsctThese benefits lead
to more robust probability estimates.

Similarly to the noisy-channel models, Galley and McKeav2007) model is
generative. However they estimate the joint probabiffy,y) directly rather than
breaking it down intdP(y) - P(x|y). If T(X,y) is the set of all SCFG compression rules
that yield(f,c) andr is a parse ok then the joint probability can be estimated using:

P(xy) = ; P(Ty, 1Y)
(T, ) €T(X,Y)

One of the problems encountered by previous SCFG approachesrtpression
is unreliable probability estimates for rules. This is nhaidue to the use of Penn
Treebank (PTB) tree structures for estimation. PTB treecttires are relatively flat
which leads to sparse probabilities. For example, GalleyMoKeown (2007) found
that over half of SCFG compression productions only occuoreze in the training set.

Instead of using PTB structures to estimate SCFG compressles, the PTB
structures are annotated to provide additional infornmatithe first type of annotation
added to each syntactic category is the category’s lexead land head part-of-speech.
This annotation allows the model to determine if preposaiophrases are adjunct
or complements. The second type of annotation added toiyntategories is the
parent annotationlJohnson 1998) which is used to break unreasonable coinéext-
assumptions.

Galley and McKeown (2007) compare their lexicalized margoammar model
against the noisy channel of Knight and Marcu (2002) on thé&e32sentences from
the Ziff-Davis corpus. However, their model is trained on aam larger training set
(15,554 sentence pairs compared to 823 sentence pairs)r shiséem compresses
with an average compression rate of 62.7% and accordingrthyudgements out-
performs the noisy channel model’s compressions. Humdroeed compressions are
favoured over either system by judges.
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2.2 Discriminative Approaches

In Section 2.1 we saw how sentence compression can be fraraggkenerative paradigm.
Two problems of the generative approach are that its sitpi&achieved by making
strong statistical independence assumptions, and thaingadoes not optimise any
notion of the quality of compression.

Discriminative approaches attempt to alleviate theselprob. In the discrimina-
tive paradigm a model can use a large and rich set of featareslp disambiguate
many natural language phenomena. Unlike in the genergbpmach, these features
are not required to be independent and thus multiple oveirigpfeatures can be engi-
neered. The parameters of the model are set discriminatoyeminimising the error
rate on the training data. Discriminatively trained modedse been exploited in other
areas of natural language processing and have providestdtaihe-art results, such
as parsing (McDonald et al. 2005b), entity extraction (Sand Meulder 2003) and
relation extraction (Zelenko et al. 2003).

2.2.1 Decision-based Sentence Compression

Converting a source parse treginto a target compression parse trgegan be viewed
as a rewriting problem (Knight and Marcu 2002). The rewgtprocess can be decom-
posed into a sequence of shift-reduce-drop actions tHatf@n extended shift-reduce
parsing paradigm.

The rewriting process starts with an empty stack and an iligtuthat is built from
the source sentence’s parse tree. Words in the input lidabsdled with the name of
all the syntactic constituents in the original sentencegtaat with it. Each stage of the
rewriting process is an operation that aims to reconstiuetcompressed tree. There
are four types of operations that can be performed on thé&:stac

e SHIFT operations transfers the first word from the inputdisto the stack.

e REDUCE pops the syntactic trees located at the top of the stadckbines them
into a new tree and then pushes the new tree onto the top ofable sThis can
be used to derive the syntactic structure in the compressaersce.

e DROP, deletes from the input list subsequences of wordscttraéspond to a
syntactic constituent.
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Figure 2.3: Parse trees of a source sentence (a) and its target compression (b)

e ASSIGNTYPE operations can change the label of the treegabfhof the stack
(i.e, the POS tag of words can be changed).

An example of rewriting the tree in Figure 2.3 (a) into (b) wn in Figure 2.4.

Learning cases are automatically generated from a pachplus. Each learning
case performs one of the four possible operations for a ggt@erk and input list. The
operations represent 210 distinct operations, for exantipére are distinct ASSIGN-
TYPE operations for each part-of-speech tag.

Each learning case is represented by 99 features that f@diruwo categories: op-
erational features that reflect the current state of thetihgty stack and previous op-
erations; and source-tree-specific features that conthderee before any operations
have been applied. Using these 99 features the decisien¥toglel is automatically
learnt using the C4.5 program (Quinlan 1993). The model tiwedetermine what
operation should be performed on a parse given a set of gsatur

The decision-based model is applied to a parsed sourcensentea deterministic
fashion. First an input list is built from the source sentparse, this list contains each
word and the syntactic constituents they ‘begin’. The fesdtdor the current state are
extracted and the classifier is queried for the next operatiperform. This is repeated
until the input list is empty and the stack contains only deeni(this corresponds to
the parse for the compressed tree). The compressed sergeacevered by traversing
the leaves of the tree in order.

At test time the decision-based model was compared agdiashaisy channel
model of Knight and Marcu (2002) and human authored comyeson the Ziff-
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Figure 2.4: Example of Decision Tree process (italics denotes parents of nodes)

21



22 Chapter 2. Overview of Compression Models

Davis corpus. The decision-based model is much more aggeedsan the noisy
channel approach, providing a compression rate of 57.19%verage compared to
70.37%. This is much closer to the human compression rat8.83%6. Human rat-
ings on grammaticality and importance show that the decib@sed and noisy chan-
nel models perform comparably, however, compressionsyaedi by both systems are
significantly worse than the human authored compressions.

Nguyen et al. (2004b) extend the decision-based model gsotzabilistic support
vector machines (SVM). They propose a two-stage method paihwise coupling
to remove the deterministic constraint of the original nlodgiven the probabilistic
model, the score of a target compression tigds obtained through its derivation,
d(y) = a,ay,...,84 Whereg; are the actions performed on the original tree to reach
the compression. The score pfs the product of the conditional probabilities of the
individual actions in the derivation:

Scorey) = p(ailci) (2.4)
aied(y)

wherec; is the context in whichs; was applied. A heuristic search is then used to
find the best compressed trgg, The SVM variant of the decision-based algorithm
performed comparably to the original formulation on thef-Dfvis corpus.

2.2.2 Maximum Entropy Reranking

The previous approaches have relied on the lexical itemgparsk trees to learn rules
for compression. Riezler et al. (2003) use a richer sentemgeesentation. Specifi-
cally their approach uses a Lexical-functional GrammarGl.iparser combined with
a set of rules for sentence compression learnt from a pacalipus. Their method is
supplemented with a maximum entropy model which selectbdise compression.
The LFG parser (Riezler et al. 2002) produces a set of funati@-)structures and
constituent (c-)structures for a given sentence in a patdedat. For sentence com-
pression only f-structures are used, and these encodedldeate-argument structure
of the sentence. A transfer component (based on one usedysBvin machine trans-
lation (Frank 1999)) is used to produce reduced f-strustbgemodifying the packed
format. It rewrites one f-structure into another using atlesed set of rewriting rules.
These rules include: adding, deleting and changing indalidacts; all of which can
be obligatory or optional. For example the optional deletball intersective adjuncts
can transform a sentence like “He slept in the bed.” to “HetsleHowever, “He did
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not sleep.” cannot become “He slept.”

The transfer rules are independent of the grammar and thastdaways produce
sentences, thus a generator is used to remove structutethat have a lexical form.
The remaining f-structures correspond to candidate cosspyas which are weighted
by a maximum entropy model. The model is trained on a paratigbus of source
sentence and target compression f-structure pairs. Ttradtares were manually se-
lected from the candidate compression for their suitabds compressions. Around
13,000 features were used falling into three categories:

e Property-functions that indicate attributes, attribotenbinations or attribute-
value pairs for f-structure attributes.

e Property-functions that indicate co-occurrences of veglns and sub-categorisation
frames.

e Property-functions indicating transfer rules used tovarat the reduced f-structure.

The two-stage LFG system was tested on the Ziff-Davis cogmasprovided an
average compression rate of approximately 60%. Using a hyuggement evaluation
it was found the system performs comparably to the noisy mbieind decision-based
systems of Knight and Marcu (2002). The authors note that ibsult may seem
disappointing consider the more complex machine employ¢alvever they believe
this is due to the limited variation possible in word delatio

2.2.3 Online Large-Margin Learning

Thus far all previous approaches have relied heavily orougrparse-trees for com-
pression. While parse-trees are a rich source of linguisfiarmation and allow for
compression decisions to be generalised, they can sutier froise. The previous
work has treated the syntactic information as gold trutHpaonately this is not al-
ways the case. McDonald (2006) present a discriminativecgmhing using a large-
margin learning framework. The model has a rich feature sehdd over compression
bigrams which includes part-of-speech, parse-tree andraigncy information. The
discriminative learning algorithm learns to only trusttig@s that are good discrimi-
nators of compression and not rely on noisy data or featin&sdo not discriminate
between compressions.

Assume we have a source senterce Xi,...,X, With a target compression =
Y1,...,YmWhere eacly;j occurs inx. The functionL(y;) € {1...n} maps wordy; in the
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target compression to the index of the word in the sourceesertx. We also include
the constraint thalt(y;) < L(yi+1) which forces each word ir to occur at most once
in the compressiol. Let the score of a compressigrior a sentence be:

s(x,y) (2.5)
This score is factored using a first-order Markov assumptiothe words in the target

compression to give:
lyl

s(x,y) = _ZZS(X,L(yjfl), L(y;)) (2.6)
J:

The score function is defined to be the dot product betweegladimensional feature

representation and a corresponding weight vector:

1yl
s(x,y) = _ZZW-f(&L(yjfl),L(yj)) 2.7)
=

Decoding in this model amounts to finding the combinationigfdms that max-
imises the scoring function in (2.7). McDonald (2006) uselymamic programming
approach where the maximum score is found in a left-to-riglainner. The algo-
rithm is an extension of Viterbi for the case in which scorastér over dynamic
sub-strings (McDonald et al. 2005a; Sarawagi and Cohen 200dis allows back-
pointers to be used to reconstruct the highest scoring cessjon as well as tHebest
compressions.

Features The computation of the compression score crucially relrethe dot prod-
uct between a high dimensional feature representation tantbirresponding weight
vector (see Equation (2.7)). McDonald (2006) employs afecture set defined over
adjacent and individual parts of speech, dropped words &nasps from the origi-
nal sentence, and dependency and syntactic structuresofalise original sentence).
These features are designed to mimic the information pteden the previous noisy-
channel and decision-tree models of Knight and Marcu (20B@atures over adjacent
words are used as a proxy to the source model of the noisyaehartunlike other
models, such as the noisy-channel and decision-tree maahish treat the parses
as gold standard, McDonald (2006) uses the dependency atatsyg information as
another form of evidence. Faced with noisy parses, theileguadgorithm can reduce
the weighting given to those features, based on the pafgbsyiprove poor discrimi-
nators on the training data. Thus the model should be muclke netwust and portable
across different domains and training corpora.
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Learning The weight vectow is learnt using the Margin Infused Relaxed Algorithm
(MIRA, Crammer and Singer (2003)) a discriminative largergina online learning
technique (McDonald et al. 2005b). This algorithm learncbgnpressing each sen-
tence and comparing the result with the gold standard. ThHghteeare updated so
that the score of the correct compression (the gold stahdmagteater than the score
of all other compressions by a margin proportional to thessl The loss function of
McDonald (2006) is the number of words falsely retained apged in the incorrect
compression relative to the gold standard. A source seatetithave exponentially
many compressions and thus exponentially many margin ints. To render learn-
ing computationally tractable, McDonald et al. (2005b)ateeconstraints only on the
k compressions that currently have the highest scorey (3eat).

McDonald (2006) provided an evaluation on the Ziff-Davispmes, in which he
compared his model’s output against the decision tree m@aheght and Marcu 2002)
and human authored compressions. Human judges were askatd tcompressions
for grammaticality and importance. They judged that McOdisasystem provided
more grammatical and informative compressions than thesidectree; however hu-
man authored compressions tended to be more grammaticaDoidd found that
his model is more robust than the decision tree model whichesines fails to pro-
duce reasonable compressions, for example on a handfuhtersses the decision tree
compressions were a single word or noun-phrase.

2.2.4 Example-Based Sentence Compression

The noisy-channel model is not the only model to be used witie machine trans-
lation paradigm. Example-based machine translation ish@n@orpus based method
of automatic translation. It can be adapted to the sentemegiEssion problem us-
ing translation-template learning (TTL) (Nguyen et al. 280 The previous noisy-
channel approaches relied on having a parse of the senteaitade to perform com-
pression. With a template-learning algorithm the sentemmed not be represented
by their parse. TTL uses examples of source and target sssgdn automatically
generate template rules.

Rules for template reduction map from the source sentemgpiége to the target
compression language and have the form of Equation (2.8)a81s andTJ-’sare either
constants or variables in the source and target languagecateely.
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It is likely that | two companies | will work on | integrating multimedia with database technology

- s - (s)
It is likely that \Sz / will work on a\‘% Y.
( /Tl\ will work on /7;\
N\ N/

S, 5T S =T,

two companies integrating multimedia with database technology‘

L1: —
Two companies | integrating multimedia with database technology‘
| two companies 'vintegrating multimedia with database technology‘
L2: ‘ L5: N

Companies /\ multimedia
integrating multimedia with database technology

L6: 7
database technology

Figure 2.5: Example-based reduction for the sentence “It is likely that two companies

will work on integrating multimedia with database technology”

9.5 . Ne T L. Tj... Ty (2.8)

The template reduction rules are learnt using an unparsediglacorpus. Pairs
of examples are compared against one another to find sitreltbetween the con-
stituents of the two example pairs. In this case a constitiseoonsidered to be a
subsequence of lexical items. If there are no similar carestits, then a template re-
duction rule cannot be learnt; however, when there are aiiméds a match sequence
is generated. TTL then aligns each side of the match sequericem template rules.
Thus all template reduction rules can be learnt autom#ticeing only the lexical
items of the sentences.

Figure 2.5 shows how the sentence “It is likely that two comes will work on
integrating multimedia with database technology” can bep®@ssed using the tem-
plate rules. The two phrases “It is likely that” and “will woobn” are matched to a
template rule. Lexical rules are then applied to the renaimd the sentence which
generate alternatives for “two companies” and “integigtmultimedia with database
technology”. These are shownlin to Lg. An HMM is used to select a combination
of rules that result in the best compression.
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2.3 Data Lean Methods

The previous two sections (Sections 2.1 and 2.2) have showrphrallel corpora can
be used to automatically learn the rules for sentence cassme. One of the main
problems of relying entirely on parallel corpora is thattalk compression rules must
be estimated solely from the training corpugthout any other knowledge about words
or compressions. Thus the estimates suffer from data spgessend are consequently
unreliable. These poor estimates can eventually accuenalad result in unsatisfac-
tory compressions. One method of improving these systertwsssnply create more
training data, however this is expensive and time consumingtead one could rely
less on training data for learning and start to incorporatmain specific knowledge
about sentence compression. Another approach would bentoveethe parallel corpus
all together and move to an unsupervised approach.

This section reviews methods for sentence compressiomthabt rely solely on a
parallel corpus or at all.

2.3.1 Knowledge Rich Compression

Jing (2000) uses multiple knowledge sources to determinehmphrases in a sen-
tence can be removed. These knowledge sources are comhihemismall amount of
parallel data to select nodes of a parse tree for removalrasidde:

e multiple lexical resources that together form a rich lexi¢ding and McKeown
1998). These consist of a subcategorisation lexicon for 5960 verbs and also
include: the COMLEX syntactic dictionary (Grishman et al949 English verb
classes (Levin 1993) and WordNet (Miller 1995). The lexitounsed to identify
the obligatory arguments of verb phrases.

e lexical relations between words such as synonymy, entailiawed causation are
identified using WordNet and provide information about theus of the local
context as determined by the number of relations betweemlsvpre., words
with more links to other words are important for the local taxt).

e a parse tree of the sentence with thematic roles of phrasef @s object or
subject) using the English Slot Grammar (ESG) parser (McQO&D)

1Although Turner and Charniak (2005) do propose an unsugetivinethod which they recommend
using in combination with rules obtained from a parallelmgs.
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e a small collection of 500 source-target sentence pairs sed tor training and
testing purposes. These were gathered automatically froews service pro-
vided by the Benton Foundatideonsisting of news reports on telecommunica-
tion related issues.

The compression algorithm works in five stages. The firstestagplves parsing the
sentence with the ESG parser; this provides a base parsh#itdater stages annotate
with additional information.

Stage two involves determining which components of theeserg must not be
deleted in order for the sentence to remain grammaticalh Bade in the parse tree is
traversed and its children are marked if they are grammigtiohligatory with respect
to their parent. Simple linguistic rules determine whichrdgoshould be marked; such
as the head noun of a noun phrase, and the main verb, subgecbgatt of a sentence
if they are present. A second method is also used which rehethe lexicon. This
stage results in each node of the parse tree being annotétted walue indicating
whether it is grammatically obligatory (relative to its pat node).

The next stage takes contextual information into accounrdd/in the sentence
are linked to words within the local context, which is assdrtealso be the sentence.
Words can be linked in a variety of ways through repetitioorphological relations
or WordNet'’s lexical relations; there are nine such reladian total. The more often a
word occurs in the local context (the sentence) the more rtapbit is. The nine rela-
tions used can be weighted according to how strongly théieeldolds. For example,
repetition and inflectional relations are considered marpdrtant and thus given a
higher weight than the hypernym relation. These word scareshen used to score
the phrases within the sentence with different relationgrdouting a different weight
to the overall score.

Stage four involves corpus evidence gathered from a pa@lpus of sentence
pairs. This includes probabilities on the removal of claugwen their head noun or
main verb, the reduction of a phrase or clause (where thesphigaltered but not
removed entirely), the phrase being unchanged.

The final stage decides which phrases should be dropped wceddjiven all the
scores of the previous steps. A phrase will be dropped ifnibisgrammatically oblig-
atory, not the focus of the local context and there@easonablepast evidence that
it would be removed by humans. If there is no previous corpudesce for a drop

2http://www.benton.org
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the system uses the lexical and context information to deter how to compress a
sentence.

The compression system draws on large amount of knowledyét #iee character-
istics of language. These knowledge sources are unitedghrnules and handcrafted
scores. This makes the approach difficult to port to new dosar languages.

Jing (2000) tests her system on a corpus of 100 compresséensen against
a baseline system which removes all preposition phrasasses to infinitives and
gerunds. Phrase removal probabilities were calculated &@orpus of 400 sentences.
For evaluation, Jing definessaiccess ratautomatic measure which calculates the per-
centage of system compression decisions that agree witlamaecisions (see Chap-
ter 4 for details). Her system achieves a success rate o#@WBich considerably
outperforms the baseline (success rate 43.2%). In termeropression rate her sys-
tem on averages compresses to 67.3% whereas the humareautbarpressions were
approximately 58%.

2.3.2 Word-based Compression

All previous approaches have used parallel corpora tordiffedegrees to learn what
a compressed sentence should look like or when to perfornpoesseion. In contrast,
Hori and Furui (2003) propose an unsupervised method fotesee compression.
It is part of an automatic speech summarisation system thajpresses individual
sentences and then joins them together to form a summary.

A set of words are extracted from a sentence according to ansuisation score.
We could equally term this score a compression score, whigst lme maximised for
a fixed and prescribed compression ratio. This approach gewysnd simple word
extraction as it not only selects the important words in thetsnce but also ensures
function words are selected which lead to a grammaticalwutp

The summarisation score (see Equation (2.9)) is a combiresbune of the ap-
propriateness of the compressed sentence; it consistdigidnal scores that measure
word significancel(), word confidence(), linguistic likelihood () and word concate-
nation likelihood T). The lambdasX_,Ac, A7) are used as weighting factors to adjust
the contribution of each score.

S0)= 3 {100+ MLy

+AcCYi) +ATT (Yie1, i) } (2.9)
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The sentencg (of mwords) that maximises the scdggy) is the best compression for
an original sentence consistingrofvords (n < n).

We now introduce each measure individually, giving detaflbow a value is de-
rived for each word.

Word significance score The word significance scolemeasures the relative im-
portance of a word in a document. This is similar to the tfadbre (Salton 1988) that
is popular in the information retrieval community; it is giv by Equation (2.10).

(W) = fi Iog% (2.10)

Wherew; is the topic word of interestf; is the frequency ofv; in the documentl

is the corpus frequency af; andFa is the sum of all topic word occurrences in the
corpus §; F). Topic words are defined as nouns and verbs. A flat score igresbto
non-topic words and repeated topic words within the semtenc

Linguistic score  The linguistic score’d(wm|...Wmn_1) responsibility is to select
function words thus ensuring the compressions remain giaioal. It also controls
which topic words can be placed together. The score is meddyr then-gram prob-

ability of the compressed sentence.

Confidence score A confidence scor€ is taken from the output of an automatic
speech recogniser (ASR). This measures how certain thgmesay is that the acous-
tics for the given word match the output. This is necessargmiorking with ASR
output rather than transcribed speech. The argument isatbats which the ASR
predicts with little confidence should not be included in toenpression as they will
introduce errors into the compression.

Word concatenation score The linguistic score alone is not powerful enough to
stop the concatenation of topic words that make linguistitse but cause semantic
differences between the original and compressed sentelRoeexample, sentence (2)
is a grammatical compression of (1), however it is semalhigacorrect asbeautiful
modifiescherry blossomand notJapan The word concatenation score is designed to
alleviate this problem.

(1)  The beautiful cherry blossoms in Japan
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(2) The beautiful Japan

The score is calculated based on the sum of the dependenugijilibes between two
words (v, w;j) and betweemv; and each oj_1,...,Wn. The dependency probabilities
are estimated from a Stochastic Dependency Context Freer@aafSDCFG) (Hori
et al. 2003).

Maximising the summarisation score The summarisation score (Equation (2.9)) is
maximised for a given compression lengthusing dynamic programming. We can
break the problem down into smaller sub-problems that cdengie optimal substruc-
tures for the compression. Firstly, the summarisationeséor sub-sentences consist-
ing of one word are calculated. Sub-sentence hypothesdwdowords are then cal-
culated using the optimal substructures for sub-sentecmesisting of one word and
so on. This is recursively done until we have calculated thintal summarisation
score for the compression of words using the previous sub-sentences. A backtrack-
ing process is then performed that selects the correct veapdence = vi, ..., ym that
maximises the summarisation score.

This algorithm has been extended to provide a summary oipheitentences (Hori
et al. 2003), by compressing each sentence at varying casipreratios and then se-
lecting the best combination of compressed sentencesdiogaio an overall com-
pression ratio for the set of sentences. The first stage fenpeed using the process
described above, while the second stage is done using artyth@mic programming
process.

Hori and Furui (2004) evaluate their compression methodxadficompression
rates of 40% and 70% against a baseline which randomly resneweds until the de-
sired compression rate is reached. Fifty utterances from CMNews broadcasts in
English were used for evaluation purposes. Seventeenaom®tompressed the sen-
tences and the compressions were merged to form a word retavase in automatic
evaluation (see Chapter 4 for more details). Their compoessiethods performed
better than the baseline in all tests.

2.4 Discussion

Previous approaches to sentence compression model thesgrasindocal informa-
tion. For instance, in order to decide which words to drogytkexploit information
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about adjacent words or constituents. Local models can dmod @b at producing
grammatical compressions, however they are somewhatelimit scope since lan-
guage has morglobal properties. The long range dependencies inherent in lgggua
mean many simple linguistic phenomena are difficult to cagptuith models that rely
exclusively on local information. The desire to model mol@b@l properties in com-
pression is apparent in the work of Turner and Charniak (2@@®ye they incorporate
constraints on the rules they generate. These constramtsmaple and allow for un-
desirable rules to be filtered from the whole rule set. Howesech an approach is
only applicable to models that map the compression task ynahsonous context-
free grammar framework. It is desirable to have a generahésaork for modelling
long range dependencies and linguistic phenomena whichriwteanerely pre-process
a selection of rules or decisions, or post-process thetiegutompressions through
editing or selection via an-best list.

We will now provide some concrete examples of the long ramgksentence level
dependencies we wish to preserve from the source senterse gémerating a com-
pression.

e The compressed sentence should contain at least one verbdexut that the
source sentence had one in the first place.

e When verbs are included in the compression their argumentddbe preserved
thus the semantics of the compressed sentence must bedoawae from the
source sentence.

e Dependencies between head words and modifiers should reseaiantically
valid in the compressed sentence. Examples of this incloelemitting the re-
moval of non-essential modifiers, not including modifierghiir head word has
been removed and ensuring negations are held in the corgress

¢ In document compression, as opposed to isolated senteng@ession, the dis-
course of a document should remain coherent. To achieveasgoal we need
to ensure that the topic of the compression flows from oneesestto the next.

There maybe other properties of the generated compressimhwe may wish
to capture but the current models are beyond learning; stumbepties need not only
be linguistic or semantic but might be task or applicatiorcsiic. For example, an
application which compresses text to be displayed on sro@dkss would presumably
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have a higher compression rate than a system generatinglesiftom spoken text.

These kind of properties are very difficult for the model tarleunless we have training
data tailored to the task or application. Again a generah@bdf incorporating such
knowledge into the model is desirable.

Existing approaches do not model global properties of threpression problem,
despite the potential benefits. This is for good reason. ikgnthe best compression
for a long sentence given the space of all possible commmesgithis search process
is often referred to as decoding or inference) can becomadtatble for too many
constraints and overly long sentences. Typically, the dexpproblem is solved ef-
ficiently using dynamic programming often in conjunctiorttwheuristics that reduce
the search space (e.g., Turner and Charniak 2005). Dynamgrgmming guaran-
tees we will find the global optimum provided the principleogitimality holds. This
principle states that given the current state, the optineaision for each of the re-
maining stages does not depend on previously reached stage=viously made deci-
sions (Winston and Venkataramanan 2003). However, we kh@aatd be false in the
case of sentence compression. For example, if we have edlobdifiers to the left
of a noun in a compression then we should probably includetum too, also if we
include a verb its arguments should also be included. Witlrehic programming
approach we cannot easily guarantee such global propargesnforced.

In later chapters we will begin to address the issue of modglbng range depen-
dencies and other global and local properties in a manneigtepplicable to many

compression approaches.

2.5 Summary of Chapter

In this chapter we have examined the computational treatofesentence compression
and characterised the performance of each system.

The supervised systems that are comparable from the resaltented can be sum-
marised as follows: the decision-based systems (decisgenand two-stage SVM),
the noisy-channel model of Knight and Marcu (2002) and Rieet al.’s (2003) com-
pression system all perform similarly according to humagigements, however the
decision-based systems compressed much closer to the tgmldasd compression
rate. These systems are outperformed by Turner and Chasr{2®05) noisy-channel
model and Galley and McKeown'’s (2007) system using lextzealimarkov grammars.

3There are 2 possible compressions whatés the number of words in a sentence.
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However, the former only compresses at 81.2% and the lagsst gonsiderably more
training data. Finally, McDonald’s (2006) system outperie the decision-based sys-
tems using the same amount of training data and retains &sicoimpression rate to
the gold standard. The other systems are difficult to compacause the evaluations
have not contained a baseline system common in other eiaigat

We concluded the chapter with a discussion of some of thedirons of the cur-
rent approaches and described various examples of long l@md) sentence level de-
pendencies we would like to capture.



Chapter 3
Sentence Compression Analysis

The previous chapter introduced various models of the sesteompression task.
Like many natural language processing techniques the mmagrcompression tech-
niques fall under a supervised setting. The requirements supervised learning al-
gorithm are that there is a training set of example inpupatpairs for which to learn
the model’s parameters.

A set of training examples is usually termegarallel corpuswhen text rewriting
occurs between a source and target text (in our case sesjer@btaining a parallel
corpus is often a laborious task. Luckily in some text rewgttasks, such as machine
translation and summarisation, it has been possible tavattoally collect a parallel
corpus. For example, in machine translation, parallel e@pmccur naturally within
limited domains. They are often a by-product of governmiegftarts to provide docu-
ments and proceedings to a multilingual populace. Howevieen large problems are
split into sub-tasks training data may be difficult to obtasthe output of the sub-tasks
may not be directly observable. The sentence compresss@resdibits this problem.
Compressions are not as naturally abundant as summarieangtations. Even rarer
are compressions restricted to being formed by word deletione (see the definition
in Chapter 1).

When a parallel corpus cannot be automatically acquiredneisessary to build
one manually. In such situations a set of guidelines mustrbeéuzed for annotators
to follow when creating examples. This ensures the anmotatmade are consistent
between annotators.

In this chapter we will discuss two methods for gathering passion corpora and
motivate the approach we adopt in this thesis. Next, we waljale a detailed analysis
of the compression task and highlight any differences betvaitomatically gathered

35
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Source Thespeakers notes and handouts are a by-product of the slide
show processand add the professional polish to your presenta-
tion without extra effort.

Target Speakers notes and handouts are a by-product of the slide sho
process.

Source Thalocumentation is excellestit is clearly written with numer-
ous drawings, cautions and tips, and includes an entireosemt
troubleshooting.

Target Documentation is excellent.

Source The FTS 2000 acquisition strategy went beyondahsicobjec-
tive of simply replacing the 25-year-old FTS.

Target The FTS 2000 acquisition strategy went beyond the objective o
replacing the 25-year-old FTS.

Source The simplest topology is the daisy chain.

Target The simplest topology is the daisy chain.

Figure 3.1: Sentence compression examples from the Ziff-Davis corpus. Sentences
marked Source are the original source sentences and Target the target compressions.

Words in italics are shared between source and target.

and human authored corpora; and between spoken and writeaids.

3.1 Compression Corpora

Automatically Created Corpora One method of automatically obtaining a parallel
corpus of originalsourcesentences anthrget compressed sentence pairs has been
proposed and successfully employed by Knight and MarcuZR0Given a collec-
tion of documents and corresponding abstracts we can atit@ityg extract original
source-target compression pairs. Assuming a documenaicdmg source sentences
D=s,%,...,5; we can search the document’s abstréct ty,1to, ... ,t, for a target
compressiom where the words in the compression are a subset of those oritfieal
source sentencs, and the words occur in the same order in both sentences.
Previous work on sentence compression has almost exdysisted the Ziff-Davis
corpus for training and testing purposes. This corpus woaigEs from a collection of
news articles on computer products. The corpus was createdhatically using the
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previously described procedure. A training set and testosat the corpus consisting
of 1035 sentences and 32 sentences respectively. Eachessemtence is provided
out-of-context. Figure 3.1 demonstrates some of the seagsiound in the Ziff-Davis

compression corpus.

Galley and McKeown (2007) note that the Ziff-Davis corpustains over 4000
abstract-document pairs and the 1087 extracted sentemsegqaesent a recall of only
1.84%. To gather additional training material they loodemassumption that a target
compression must only involve word deletion with respedht® source sentence and
allow for substitutions and insertions. For example, Seceg1-b) is now considered
a valid compression of (1-a) as it includes the one-word tsulisn of computemwith
unit.

(1) a. The second computer started up and ran without intiden
b. The second unit ran without incident.

Although in this exampleomputerandunit are meaning equivalent, Galley and McK-
eown'’s (2007) method considers substitutions without amywkedge about word re-
lations. The resulting compressions may therefore comtaise (i.e., the substitutions
performed may not always correspond to the same entities).

Relaxing the word deletion assumption allows for a richérafe&ompressions to
be gathered automatically and allows for more varied cosgoas. Unfortunately,
obtaining source-target compression pairs automatiegign insertions and substi-
tutions are permitted is not a trivial task especially whiem number of non-deleting
edits increases. The task is known to be NP-hard, howevepgippate algorithms
exist which run in polynomial time (Zhang and Shasha 1983lleég and McKeown
(2007) gathered source-target compressions with up taisigtgutions which resulted
in 16,787 example pairs representing a recall of almost 268ebabstract sentences
in the Ziff-Davis corpus. They did not consider insertiorsstiaey adversely affected
their compression model. It is important to note that altffotheir model is trained on
data containing substitutions it nevertheless still ordgyfprms word deletion during
compression.

Manually Created Corpora  Automatically constructed parallel corpora are created
by matching sentences that occur in a document with serggheg occur in an ab-
stract. The target abstract sentence must contain a sutibetwords from the source
sentence and the word order must remain the same. While thisustable method
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when a parallel corpus is required cheaply and quickly itsdugve drawbacks.

One concern is the nature of the compressions. Although éhgpressions are
valid with respect to our limited definition they may not bemesentative of human
performance. Compressions derived from abstracts may icoatgefacts of other
tasks performed during the summarisation process rathercbmpression. Typically
multiple factors are taken into consideration when crggéirsummary such as the in-
formation already placed in the summary, future summaryterdrand the context of
the information being summarised. These factors are requo ensure the summary
flows and is coherent and truthfully represents the sourceenah It is difficult to
imagine a coherent summary if compression is being perfdrindsolation on se-
lected sentences.

Another concern is the limited scope of the compressiondomatically derived
compressions corpora are not suitable for investigatimgpression beyond isolated
sentences, since it is unlikely that an abstract will berelytcomposed of compressed
sentences. This is an important issue. For example, in suisetian we may wish
to compress a whole document prior to sentence extractiothi$ case it would be
beneficial to consider the discourse flow and document strecturing compression.
Another scenario is where sentence extraction first takesephnd then a compression
system compresses the extracted sentences to form ancalfkira2003); again the
dependencies between the abstract sentences should bertakaccount. Without
such wholly compressed documents or abstracts it is difficuinvestigate the fac-
tors of compressing documents; such an omission would bertuniate due to the
relevance of document compression to applications.

Finally, although Knight and Marcu (2002) were able to agemtompression cor-
pus fairly easily using the Ziff-Davis corpus their recallabstract sentences was ex-
tremely low. We have found that the technique does not yigltiany compressions on
other corpora of abstract-document pairs. Another prohkethat abstract-document
paired corpora only occur naturally within limited domasigch as written news and
scientific articles, in other domains such corpora are uteMa thus making it difficult
to study compression.

Taking into consideration the previous points we manualgated two compres-
sion corpora to investigate:

e Whether human compressions are similar to those obtainednaitically.

e Whether there are any differences between compressionsgaddrom differ-
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ent domains.

e The range of compression phenomena within a document rdtharfocusing
on isolated sentences.

We compiled two compression corpora to aid this investaygtia written and a
spoken corpus. The appeal of written text is understandsibt® most summarisa-
tion work to date has focused on this domain. Speech datantyppeovides a natural
test-bed for compression applications such as subtitlergéon but also poses ad-
ditional challenges. Spoken utterances can be ungramahaticomplete, and often
contain artefacts such as false starts, interjectionstatiesis, and disfluencies. Rather
than focusing on spontaneous speech which is abundantse #refacts, we conduct
our study on the less ambitious domain of broadcast newss [igs in-between the
extremes of written text and spontaneous speech as it hasdoepted beforehand
and is usually read off autocue. However, speech arteféiitarsse in many places
such as when presenters misread the autocue and during@giveesnts and unscripted
interviews.

Following the classification scheme adopted in the Britistidhal Corpus (BNC),
we assume that our two corpora belong to the same genre (hewg) different do-
mains (written and spoken). Our first corpus consists of nestisles gathered from
the BNC and the American News Text corpus. The articles oaigi form The LA
Times, Washington Post, Independent, The Guardian ang Dalegraph newspa-
pers. Eighty-two articles, totalling 1,433 sentences,ens®lected for compression.
The corpus was split into training, development and testieig randomly on article
boundaries. These sets contain 908, 63 and 462 sentenpestresly. We refer to this
corpus as the written corpus. The second corpus is a spokposcoonsisting of 50
broadcast news stories (1,370 sentences) taken from the HLE®6 English Broad-
cast News corpus provided by the LDC. The HUB-4 corpus costhrnadcast news
stories from a variety of networks (CNN, ABC, CSPAN and NPR) whnave been
manually transcribed and split at the story and sentenad.lédgain the corpus has
been divided into 882 training sentences, 78 developmartiesees and 410 testing
sentences; each set contains full stories. We call thisusaitpe spoken corpus. Both
corpora were automatically segmented at the sentence dexktokenised using the
Robust Accurate Statistical Parsing (RASP, Briscoe anddl&002) system.

Two annotators were asked to perform sentence compresgigemnioving tokens
from the original document. They were instructed to remoweds while consider-



40

Chapter 3. Sentence Compression Analysis

Source President Boris Yeltsin has won the most votes iniRassotly
contested presidential election, one watched around thielwo

Annotator 1 Boris Yeltsin has the most votes in Russia’sigesgial election.

Annotator 2 Boris Yeltsin has won the most votes in Russiagsipential
election.

Source He became a power player in Greek politics in 1974 nwWiee

founded the socialist Pasok party.

Annotator 1 He became a power player in Greek politics in 19ven he
founded the socialist Pasok party.

Annotator 2 In 1974 he founded the socialist Pasok party.

Source The number of people entitled to civil legal aid hderfaby
more than 14 million since 1979, according to research pbbti
today.

Annotator 1 The number of people entitled to legal aid hdefidby 14 mil-
lion since 1979.

Annotator 2 The number of people entitled to legal aid hdsifidby 14 mil-
lion since 1979.

Source Some experts say that even if the eruption stoppexy,tole

sheer pressure of lava piled up behind for six miles woulddpr

debris cascading down on to the town anyway.
Annotator 1 Experts say even if the eruption stopped, therspeessure of
lava piled up for miles would bring debris down on the town.
Annotator 2 Experts say even if the eruption stopped todsy,pressure o
lava piled up for six miles would bring debris on to the town.

f

Figure 3.2: Sentence compression examples from the two human authored compres-

sion corpora. The first two examples are taken from the spoken corpus and the last

two from the written corpus. (Source: source sentence, Annotator 1. first annotator’s

compression, Annotator 2: second annotator’'s compression).
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ing: (a) the most important information in the original samte, and (b) the gram-
maticality of the compressed sentence. If they wished tlmydcleave a sentence
uncompressed by marking it as inappropriate for comprasdibey were not allowed
to completely delete sentences even if they believed theyageed no information
content with respect to the document. This final constrampbfies the task and en-
sures a boundary exists between compression and sumnmarisgee Appendix A.1
for the full instructions and examples given to our annatato

Figure 3.2 demonstrates some example compressions chieatedr annotators.
The first two sentences originate from the spoken corpus egsethe final two sen-
tences come from the written corpus. These corpora denatashre variation possible
and observed during compression.

3.2 Corpus Analysis

We first begin by providing an analysis of the three compoessorpora: the automati-
cally constructed Ziff-Davis corpus, and our two human autkd compression corpora
on spoken text and written text.

Compression Rate ~ Compression rate is a measure of how terse a compression is
and is given in Equation (3.1). A compression rate of 100%imsghe sentence is left
uncompressed.

Length of compression
Length of source
We compute compression rate on a sentence-by-sentencedsabie task is de-

Compression Rate (3.1)

fined over sentences. The compression rate for an entirentg@uor a collection
of compressions is calculated by taking the average of th&poession rates for the
collection.

Table 3.1 shows the average compression rate for each carplinnotation
method. The table displays a distinct difference betweenhtiman authored com-
pression corpora and the automatically obtained corpu§Qavis). The Ziff-Davis
is compressed much more aggressively than our human adtborgora. This maybe
due to the methodology used in obtaining this corpus. We eartlsat the compres-
sions created by our annotators are much more conservatigemparison and are
similar across domains. The compression rate for our hunoémoeed corpora are
within 5% of one another with an average rate of approxinyat8bab.
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Figure 3.3: Scatter plots of source sentence length against compression rate for the

three corpora (a. spoken corpus, b. written corpus, c. Ziff-Davis).
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Corpus Annotation Length Comp Rate
Spoken Source 20.36 100%
Spoken Human 1l | 14.67 75.2%
Spoken Human 2 | 13.58 70.7%
Written Source 27.83 100%
Written Humanl1l | 19.48 72.6%
Written Human2 | 20.57 74.2%
Ziff-Davis Source 23.91 100%
Ziff-Davis Automatic | 12.74 58.1%

Table 3.1: Compression Rates for the two manually constructed corpora (spoken text
and written text) and the automatically constructed Ziff-Davis corpus. Length: average
sentence length; Comp Rate: average compression rate (where 100% implies uncom-

pressed).

We next turn our attention to examining the relationshipuaetn sentence length
and compression rate. Such an analysis may provide insighitselecting a com-
pression rate for a given sentence. Figure 3.3 shows platedfource sentence length
against the compression rate for our spoken and writterocargnd the Ziff-Davis cor-
pus. All three plots are extremely scattered and demomstratcorrelation between
source sentence length and compression rate. For exarhple,@xamine sentences
with a length of approximately 30 tokens, we see that the ceagion rate on the
Ziff-Davis corpus (see Figure 3.3c) ranges from 12% to 10fi%the spoken corpus
(Figure 3.3a) the range is 19% to 98% and 26% to 95% for theéemritorpus (Fig-
ure 3.3b). This suggests that compression rate is a funofiarhigher level property
of the sentence, it does not depend on the sentence’s sigftoees (such as length)
but more likely is determined by its structure and informaatcontent. Thus the com-
pression rate can not be assumed fixed throughout a corpu®prfer sentences of
a given length. Despite this, it may be desirable to specifyirimum, maximum or
range of compression rates for various applications.

Although Figure 3.3 appears to display some regular patésee the arc shapes
formed by the plot) such formations are due to the discreteraaf compression rate
rather than any inherent pattern in the data. Compressi@nisatot a continuous
measure: there are only a certain number of fixed compresaten possible for each
sentence (i.en possible compression rates, wheris source sentence length).
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Figure 3.4: Distribution of spans of words dropped (a. spoken corpus, b. written corpus,
c. Ziff-Davis)

The human annotators rarely compress sentences below €036\(ing over 60%
of the words) as shown in Figures 3.3a and 3.3b. However, tfidDAvis corpus
(Figure 3.3c) displays a large proportion sentences besngpcessed beyond 40%. It
is also interesting to note that there is little differencehie plots between the domains
of written and spoken text when compressions are being pextiunanually. The
annotators also leave more sentences uncompressed in sonp@® the Ziff-Davis
corpus. This can be seen in the figures by the concentratipaionfs at a compression
rate of 100%.

Word Removal Analysis ~ We also examined whether the three corpora differ with
regard to the length of word spans being removed. Figure [8#s how frequently
word spans of varying lengths are being dropped. A word spatefined as a con-
tinuous sequence of tokens. As can be seen, a higher pegeenitéong spans (five
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Constituent Spoken Written Ziff-Davis
Total % drop| Total % drop| Total % drop

NP 5892 18% | 8678 19% | 7114 38%
PP 1754 16% | 2757 22% | 2195 42%
SBAR 692 11% | 863 8% | 511 3%
WHNP 162  43% | 247 34% | 215 83%
VP 3302 8% |4320 7% | 3379 27%
S 2324 6% | 2734 5% | 2227 21%
ADVP 564 57% | 476 61% | 421 64%
ADJP 305 14% | 342 22% | 402 35%

Table 3.2: Percentage of constituents dropped for the spoken corpus, written corpus
and Ziff-Davis. Total refers to the frequency the constituent occurs in the source data. %

drop is the percentage of times the constituent was dropped in forming the compression.

or more words) are dropped in the Ziff-Davis corpus. Thisgrsis that the annota-
tors are removing words rather than syntactic constitugbksser examination shows
there are no significant differences in the length of spanppied between annotators
on the same corpus. There are differences between the hurttasred corpora (spo-

ken text and written text) and the automatically createghasr(Ziff-Davis), and these

differences are significant at a level pk 0.01 using the Wilcoxon Test. There is no
statistically significant difference between the humarmared written text and spoken
text corpora.

We next investigate the deletion of syntactic units. We @@rsur corpora us-
ing Roark’s (2001) parser which provides Penn Treebanle stghotations. Table 3.2
illustrates how often each constituent was dropped in thepression as a percent-
age. A higher percentage of constituents are being dropp#eiZiff-Davis. This is
somewhat expected since the Ziff-Davis corpus is compdeasdigher rate. A rel-
atively high percentage afh-noun phrases (WHNP) are dropped throughout all cor-
pora; these typically introduce clauses and contaatavord, e.g.who, which, whose
abstract form, that, precisely whagtc. It is interesting to note that in the two human
authored corpora, clauses are not often dropped (SBAR, 1¥&a5%) in compar-
ison to the Ziff-Davis corpus (SBAR, 37% and S, 21%). This issirlikely due to
only part of the clause being dropped in the two human authooepora. Adverbial
phrases (ADVP) are dropped frequently throughout all ccapuggesting they are
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Tag Spoken Written Ziff-Davis
Total % drop| Total % drop| Total % drop

AUX 1058 24% | 1105 20% | 801  36%
CcC 510 40% | 624 39% | 805 50%
DT 1720 28% | 2377 30% | 2023 48%
IN 1929 32% | 2862 35% | 2162 53%
JJ/IIRIIIS 1072  32% | 1796 47% | 1945 45%
MD 175  21% | 256  12% | 281 34%
NN/NNS 3083 23% | 4800 28% | 5255 40%
NNP/NNPS 1559 16% | 2642 25% | 1612 50%
PRP/PRP$ 932 30% | 981 27% | 308 68%
RB/RBR/RBS 922 55% | 806 58% | 663 63%
TO 446  25% | 637 27% | 481  46%
VB 497 20% | 537 20% | 533 3%
VBD 251 17% | 697 14% | 188 73%
VBG 315 19% | 394 21% | 318 51%
VBN 353 19% | 688 25% | 450 42%
VBP 165 53% 82 32% | 147 42%
VBZ 151 22% | 114 21% | 417 39%
WDT/WP/WP$/WRB| 232 41% | 331 31% | 237 81%

Table 3.3: Percentage of part-of-speech (POS) tags dropped for spoken, written and
Ziff-Davis corpora. Total refers to the frequency the POS tag occurs in the source data.

% drop is the percentage of times the POS tag was dropped in forming the compression.

usually superfluous. We see in our human authored corporad¢htéences (S), clauses
(SBAR) and verb phrases (VP) are very important and not aftepped whereas the
Ziff-Davis compressions are more inclined to remove them.

We provide details of the grammatical categories being jgedan Table 3.3. The
table shows various part-of-speech (POS) tags, their &ecpin the source sentences
from our training corpora, and the percentage of times e&8 Rg is dropped. When
we examine Table 3.2 in conjunction with Table 3.3 we seedhaive baseline that
removes all prepositional phrases, claugesnfinitives and gerunds will struggle to
create high quality compressions; this has also been erafpyriobserved (Jing 2000).
The table also provides evidence against other naive methodh as dropping all
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Tag Spoken| Written | Ziff-Davis
AUX 5% 3% 3%
CcC 4% 3% 4%
DT 10% 10% 10%
IN 12% 13% 11%
JJ/JIR/IIS 7% 11% 9%
NN/NNS 14% 18% 20%
NNP/NNPS 5% 9% 8%
PRP/PRP$ 6% 4% 2%
RB/RBR/RBS| 10% 6% 5%
TO 2% 2% 2%
VB* 8% 7% 7%

Table 3.4: Relative percentage of total part-of-speech (POS) tags dropped.

adjectives (JJ/JIJR/JIIS) as we observe less than 50% ofjedtiags are dropped in
forming compressions.

Table 3.4 provides a slightly different look at the gramroalticategories being
dropped. The table shows the proportions of the total dragsunted for by each
part-of-speech (POS) tag. This shows that the frequentyming tags tend to account
for a larger percentage of total drops and similar propaodiare observed across all
corpora.

3.3 Summary of Chapter

In this chapter we have presented a novel and detailed asalythe sentence com-
pression task. We examined various methods for data atiquisiThis has resulted
in the creation of two new publicly available compressiorpooa in the spoken and
written domains. Upon examining the corpora we have fouiad tile compressions
produced by our annotators differ to those obtained auticalt from the Ziff-Davis

corpus. The annotators’ compressions are much more catserthan those auto-
matically acquired (approximate 70% compression rate @etgpto 50% of the Ziff-

Davis). Our annotators were asked to perform sentence @asion explicitly as an
isolated task rather than indirectly as part of the broadsk of abstracting, which

1The data can be downloaded frduitp://homepages.inf.ed.ac.uk/s0460084/data
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we can assume is the case with the Ziff-Davis corpus. Theifrguof the task may
have been a contributing factor in the differences obsebetdieen the corpora. For
example, the Ziff-Davis compressions may not be trying taireall the important in-
formation in a sentence, instead only retaining the infaromawhich is relevant to the
rest of the abstract sentences. This suggests that th®4avils corpus may be more
representative of an abstracting task rather than a pur@@ssion task.

Our compression analysis affords several conclusiongdegathe task. Setting a
fixed compression rate is inappropriate unless the apmit&nposes a certain com-
pression rate. Methods which remove prepositional phrasasses, to infinitives and
gerunds will prove to be weak baselines; our word removalyaisademonstrates that
the sentence as a whole plays a role in compression notgustgiistic units in iso-
lation. Also the notion of how much to compress a sentencs gegond the surface
features of the source sentence and is more likely relatdtetomformation content of
the sentence.



Chapter 4
Evaluation Techniques

Evaluation is an important aspect of any natural languageqssing task. Without
systematic evaluation it is impossible to assess the gualan NLP system and com-
pare performance against other systems. Many NLP tasks feuging, named entity
recognition, chunking and semantic role labelling) can i@matically evaluated us-
ing standard precision and recall measures. However,ghist always applicable to
text generation tasks such as summarisation, machinddtmsand sentence com-
pression where there is no unique gold standard againshwiievaluate the system’s
output. For example, in machine translation there are pialpossible translations of
the source sentence which can be considered correct. Theisame for summari-

sation and sentence compression. Our annotators do noysalvanpress a source
sentence identically (Figure 3.2 demonstrates some of iffe¥ehces between com-
pressions produced by our annotators), however we stilliden compressions as gold
standard. The nature of text generation tasks is such ttext efstem output must be
evaluated by human judges. Human evaluations considereliff aspects of the au-
tomatically generated texts such as grammaticality, flyereadability and content
selection.

Although manual evaluations provide essential feedbacthemuality of system
output, they are costly and time consuming to run. Duringetigsment, evaluations
must be performed quickly and frequently and is thus impeattto elicit human
judgements for development purposes. Due to this, reseskeek methods for auto-
matically evaluating system output without any human inpirtfortunately it can be
difficult to find suitable automatic evaluation measureséat generation tasks. A lot
of research is devoted to finding suitable automatic evalnaheasures for summari-
sation and machine translation. In this chapter we will es@lkome of the automatic

49
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evaluation methods proposed for sentence compressioneaida find one that cor-
relates with human judgements. First we concentrate onguswmanual evaluation
studies and their design. We conclude the chapter by camsgdaow to evaluate
compressed documents rather than sentences.

4.1 Manual Evaluation

Almost all previous approaches to sentence compressidoaian have focused on
intrinsict human judgements. Knight and Marcu (2002) provided the ffitsinsic
human judgement evaluation. Their experimental setupist@usof four judges be-
ing given 32 source sentences coupled with four differemmp@ssions (three system
compressions and one gold standard). The judges were tatdathcompressions
had been generated automatically and the order they wesened was randomised
across judges. The evaluation was broken down into two stagehe first stage the
judges were asked to rate on a five point scale how well thesysstid at selecting
the most important information with respect to the sourcgesgce. In the second ex-
periment the judges rated how grammatical the outputs weeefive point scale. This
experimental setup has been adopted in most sentence asigprevork (Galley and
McKeown 2007; McDonald 2006; Nguyen et al. 2004b; Turner @hdrniak 2005).
Our experiments will follow a modified version of Knight andaktu’s (2002) eval-
uation setup but allow for a greater range of significancestesbe performed. Our
changes also allow us to more reliably measure the diff@ebetween system com-
pressions. In Knight and Marcu’s design each judge (or stipjs presented with
n x k compressions, wheneis the number of sentences akds the number of sys-
tem configurations (including the gold standard). This megusubjects to judge a
large number of compressions which may become a burden osuthject. Another
problem is that subjects directly judge the difference le&twcompressions on the
same sentences; such a design can lead to inaccurate juttgessethe comparison
of compressions is done on a per sentence basis rather thansggtem basis. We
modify the experimental design to use a Latin square whi@vents subjects from
seeing two different compressions of the same sentence.r@sults in subjects seeing
n compressions rather thanx k. Obviously with such a change more subjects are

Lintrinsic evaluations test the system in and of itself; feample, they determine the quality of a
system’s compression, whereas extrinsic evaluationghestystem in relation to a task (Sparck-Jones
et al. 1996).
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Treatment 1) Treatment 2| Treatment 3
Item 1 A B C
ltem 2 C A B
Item 3 B C A
Item 4 A B C
Item 5 C A B
Item 6 B C A

Figure 4.1. Example Latin Square design. Different treatments are represented by
columns and items as rows. Subjects are split into three sets (A, B, C) and only see

one treatment of each item.

required to obtain the same number of judgements per cosipresHowever, as we
are only dealing witm compressions the time required to complete an evaluation is
much shorter and thus it is easier to elicit volunteers valtiternet.

Our human evaluation setup is outlined as follows. Volurgeee recruited through
mailing lists (typically student mailing lists) to partpate in our evaluation. The ex-
periment is conducted via the Internet using a custom madeimerface. Before
the subjects participate in the experiment they are predenith a set of instructions
detailing sentence compression and their task with the fagk@mple compressions;
good compressions and poor compressiofifiey are informed that all compressions
are generated automatically and asked to provide some mmrdetails such as the
country they grew up in. These details are used to ensureotirasubjects are na-
tive speakers and have an adult’'s grasp of English. Eaclestisj presented with
source sentences andompressions (one compression per sentence). They am@ aske
to first read the source sentence and then press a buttondal réve compression
and ratings interface. A Latin Square design is used andriher of the sentences is
randomised. The Latin Square design ensures that subjeatstdsee two different
treatments (i.e., compressions) of the same sentence.xborpde, if we have three
compression systems (treatments) and six source sent@eraes) each subject (par-
ticipant) will see one of three possible set of compress(sas Figure 4.1, sets A, B,
C). Itis important to ensure we have the same number of paaints for each set; this
is taken care of by the evaluation interface which seleasabpropriate set to show
each subject.

2Appendix A.2 contains a typical set of instructions for olicieation study.
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Subjects are asked to rate how grammatical the compressiamd how well the
compression preserves the most important information fimersource sentence. Both
ratings are on a five point scale, with a score of one being aodfive being excellent.

4.2 Automatic Evaluation

Although human evaluations provide valuable feedbacls itat practical to conduct
them repeatedly during system development. It is thus aleleirto have automatic
evaluation measures for gauging how different factors arfae a system’s or model’s
performance without always resorting to manual evaluatiich is admittedly time
consuming and expensive. There are three criteria whicld@seable from an auto-
matic evaluation measure (Lapata 2006). First, it shouldsuee the numerical simi-
larity or closeness of the system output with respect to arseweeral gold standards.
Second, the measure should be robust and domain and lanigdagendent; we want
to be able to use the same measure across different corpowllyFcorrelation with
human judges is an important aspect. The measure shouldtriseresults observed
in human evaluations.

Automatic evaluation of sentence compression has beersledigd in the liter-
ature, although several automatic measures have beengeapthese include calcu-
lating deletion decisions on a syntactic tree, considesinglarity to a gold standard
or multiple gold standards and computing F-scores on graimaiatructures between
system output and gold standard.

Jing (2000) proposed the first automatic measure for corajmes she defines a
success rateneasure that evaluates systems based on the decisions itfagleyantac-
tic level compared to those required to reach a gold stanctamtpression. The com-
pression process is considered as a series of decisiong tleredge of a sentence’s
parse tree. Each node can be either kept or removed and txenagnt between system
and human are computed. The success rate ranges from zame tnd is defined as
the ratio of the number of edges that the human and system tinalsame decision on
to the number of edges which the human and system have madedsaipon. Thus,
this measure only concentrates on the edges that both hunthayatem perform a
decision on.

For example, consider the tree in Figure 4.2. If the humapgeege A-C and A-B
but the computer drops A-C and keeps A-B, the edgé&3+a DE will not be consid-
ered, thus it may be possible to get an artificially high séore poor compression by
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Figure 4.3: An example word network formed by multiple compressions of the same

sentence.

only considering a few of the ‘top’ nodes.

The word network of Hori et al. (2004) combines multiple hum@mpressions
into a word lattice. The lattice contains many more sentemtican the number of hu-
man compressions, thus Hori et al. compare their systenmsigaie compression from
the word lattice that gives them the highest evaluationes¢based on substitutions,
insertions and deletions). A typical word network is showirigure 4.3. The use of a
word lattice forces artificially high scores, because soemgences obtained within the
lattice will be poor compressions. For example in Figurethe8compression “Cherry
blossoms in Japan” would be considered 100% correct evargthit has very little
information content in comparison to the other compressiéiso the evaluation pro-
cedure assumes there are multiple gold standard compnesasiailable, but in practice
these are difficult to obtain.

Simple String Accuracy (SSA, Bangalore et al. 2000) has Ipeeposed as a base-
line evaluation measure in natural language generatiors based on a normalised
string edit distance between a generated sentence anddtstgodard. The measure
consists of the number of insertioh) (deletion D) and substitution$) errors between
the two strings. Equation (4.1) defines the SSA score wRasdhe length of the gold
standard string. The measure has an upper limit of 1 (wheodh®gression matches
the gold standard), however it can fall below 0 when the nunolbedits required is
greater than the length of the gold standard string.

Simple String Accuracy- (1— %) (4.2)
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A parsing-based evaluation measure has been proposed blieRe¢ al. (2003).
They compare the grammatical relations found in the systemptessions against
those found in a gold standard. This provides a means to meetigisemantic aspects
of summarisation quality in terms of grammatical-funcabmformation. The stan-
dard measures of precision, recall and F-score can thendaktagjuantify the quality
of system output against a gold standard. Precision is th&eu of relations in the
system compression that match the gold standard over thientamnber of relations in
the system compression. Recall is the number of relatiotisarsystem compression
that occur in the gold-standard over the total number otiaia in the gold-standard.
The F-score is then defined in terms of precision and rec&hjnation (4.2).

(4.2)

The matching of grammatical relations is shown in Figureid dhich we have a
gold standard compression and its relations compared stgamsystem output and its
relations. The precision and recall in this example are @7® 1.0 respectively, this
results in an F-score of 0.86.

We ran a judgement elicitation study in order to investigatech of the above
mentioned measures correlates reliably with human judgé&n@his is a prerequisite
for employing automatic measures in large scale evalustidn our experiment we
consider the Simple String Accuracy (SSA, Bangalore et @02 and grammatical
relation F-score (Riezler et al. 2003). A set of 40 sentemsz® taken from the Ziff-
Davis and spoken corpus (split evenly, 20 sentences eawfy alith their correspond-
ing gold standard compressions. We used Knight and Mar@®82) deterministic
shift-reduce-drop decision tree system and Hori and Fai(@i004) word-based model
to obtain system compressions of the 40 sentences. The snadet chosen due to
their previously published results on written and spokest tespectively. The com-
pressions were presented to sixty volunteers, all selfrtedmative English speakers.
The study followed our evaluation setup outlined in Sectdoh but differed in one
aspect. Automatic evaluation scores conflate the two reigur human judgements
(grammaticality and importance). In order to correlate hamatings with automatic
scores we must also conflate both criteria into a single sdeaeticipants were asked
to rate the compressions on a five point scale taking intowaddte information re-
tained by the compression and how grammatical it is. Thigidesl a score to correlate
against automatic evaluation measures.

Along with performing correlations we also wanted to exaenane other aspect
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Gold standard “Mother Catherine, 82, the mother superidt,attend.”
(ncsubj, attend, Catherine)
(ncmod, Catherine, Mother)
(ncmod, superior, mother)
(detmod, superior, the)
(ncmod, Catherine, 82)
(aux, attend, will)

System compression “Mother Catherine, 82, the mother sopevill attend the hear;
ing.
(ncsubj, attend, Catherine)

(dobj, attend, hearing)
(ncmod, Catherine, Mother)
(ncmod, superior, mother)
(detmod, superior, the)
(ncmod, Catherine, 82)
(detmod, hearing, the)

(aux, attend, will)

Figure 4.4: Grammatical relations obtained from RASP for gold standard and hypothet-

ical system compression.

of the evaluation setup, the mode of presentation. The stadythus split into two
conditions. In the first condition participants were prasdrwith the source sentence
while the compression was hidden. They were asked to reasbilvee sentence be-
fore revealing the compression (via a button on the web faxte). They then read
the compression and gave it a score. For the second contlitiooompression was
displayed first with the source sentence hidden. These twditons were designed
to investigate if there is any variation in judgements dejgg on the order the source
sentence and compression are presented. Analysis of YarfAMNOVA) tests revealed
that there was no significant difference in the ratings ol@diwhen the judges were
presented with the source first, then the compression aadreisa. The results of the
two studies were then concatenated to perform correlatieasures.

We next examined the degree to which the automatic evaluatieasures corre-
late with human ratings using simple string accuracy (SSAdaéore et al. 2000) and
relation F-score (Riezler et al. 2003). Our results are showTable 4.1 using Pear-
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Measure| Ziff-Davis | Spoken

SSA 0.171 0.348*

F-score | 0.575* | 0.532**
*p< 005 *p<0.01

Table 4.1: Correlation (Pearson’s r) between evaluation measures and human ratings.

Stars indicate level of statistical significance.

son’'sr correlation. Pearson’sreflects the linear degree to which the two variables
(human judgement and automatic measure) are related. desafnom +1 to -1. A
correlation of +1 means there is a perfect positive linekti@nship between the vari-
ables whereas -1 implies a negative linear relationship. fide that SSA does not
correlate on both corpora with human judgements; it thusnse® be an unreliable
measure of compression performance. However, the F-saorelates significantly
with human ratings, yielding a correlation coefficientrof 0.575 on the Ziff-Davis
corpus and = 0.532 on the spoken corpus. To get a feeling for the difficultyhef
task, we assessed how well our participants agreed in t@ngs using leave-one-out
resampling (Weiss and Kulikowski 1991). The techniqueealates the ratings of each
participant with the mean ratings of all the other partioisa The average agreement
isr =0.679 on the Ziff-Davis corpus and= 0.746 on the spoken corpus. This result
indicates that F-score’s agreement with the human data fentvom the human upper
bound.

4.3 Document-level Evaluation

The evaluation criteria we have considered thus far havasied exclusively on in-
trinsic evaluation; judging a compression in relation te fource sentence. This has
allowed us to define evaluation procedures for sets of iedlaentences. However,
many potential applications will operate at the documetitenathan sentence level.
For example a compression system that shortens text to pagesl on devices with
small screens will generate compressed documents. Alththegindividual sentences
can be evaluated, we may also wish to evaluate the documenivasle. It is possi-
ble, for example, for the individual compressions to be gooahpressions but for the
document to be incoherent. In Chapter 7 we present a docupasetd compression
model which will require a document specific evaluation roethlogy. Our evaluation
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methodology is motivated by two questions: (1) are the cesged documents read-
able? and (2) how much key information is preserved betweersdurce document
and its target compression? These are similar to the sexienel questions presented
in Section 4.1; however, now we are considering compressedrdents.

The readability of a document is fairly straightforward teasure using a rating on
a scale. Measuring how much information is preserved in timegressed document is
more involved. Under the assumption that the compressedndet is to function as
a replacement for the source document, we can design a gurestswering paradigm
to find answers for questions which have been derived fronstlece document and
are representative of its core content. Thus, the overgabloe of our Q&A task is to
determine how accurate each document (generated by diffeoenpression systems)
is at answering questions derived from the source documé&he Q&A paradigm
has been used previously to evaluate summaries and textrebension (Mani et al.
2002b; Morris et al. 1992).

Morris et al. (1992) performed one of the first question-agismg evaluations to in-
vestigate the degree to which documents could be summadrefece reading compre-
hension diminished. Their corpus consisted of four passagedomly selected from
a set of sample Graduate Management Aptitude Test (GMATimgacomprehension
tests. The text covered a range of topics including: metligeaature, 18th-century
Japan, minority-operated businesses and Florentine acorpanying each text were
eight multiple-choice questions, each containing five fbs@nswers. The questions
were provided by the Educational Testing Service and wesggded to measure the
subject’s reading comprehension. Subjects were givelowaiiextual treatments: the
full text, a human authored abstract, three system gertbextieacts and a final treat-
ment where merely the questions were presented withoutety The questions only
treatment was used as a control to investigate if subjectisl @swer questions with-
out any source material. Subjects were instructed to reagdlssage (if provided) and
answer the multiple choice questions.

The advantage of using standardised tests, such as the Gaaéling comprehen-
sion test, is that question-answer pairs are provided alatiga method for scoring
answers (i.e., which answer from the multiple choice qoesis correct). However,
our corpora do not contain ready prepared question-ansaies fhus we require a
methodology for constructing questions, constructingaaans and scoring documents
against the answers. One such methodology is presented IRIBSTER Text Sum-
marization Evaluation (SUMMAC Mani et al. 2002a). SUMMAC sveoncerned with
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What is posing a threat to the town? (lava)

What hindered attempts to stop the lava flow? (bad weather)

What are the Army attempting to block to halt the lava flow? @nmgdound con-
duits)

What did the Army do first to stop the lava flow? (detonate expés

What other experiments are planned? (using concrete slabs)

Do the experts agree over what to do next? (no)

Figure 4.5: Example questions with answer key in brackets for document in Figure 4.6.

summarising TREC topics, and for the Q&A evaluation thregide were selected.
For each topic, 30 relevant documents were chosen as s@xtsdd generate a single
summary. One annotator per topic crafted no more than fivetouns relating to the
obligatory aspect®f the topic. Anobligatory aspectf a topic was defined as infor-
mation that must be present in the document for the docunoebé trelevant to the
topic. The annotators then created an answer key for thgic toy annotating the pas-
sages and phrases from the documents which provided theeemswthe questions.
In the SUMMAC evaluation, the annotator for each topic wa® aiven the task of
scoring system summaries. Systems were scored againshsheiakey (annotated
passages from the source documents) using scoring critextanvolved judging if
the summary provided &orrect Partially Corrector Missing answer. If a summary
contained an answer key and sufficient context the summasydeamed to be ‘cor-
rect’, however, summaries would be rewarded ‘partiallyreot’ if the answer key was
present but with insufficient context. If context was conggmissing, misleading or
the answer key was absent then the summary was judged ‘gfiissin

Our methodology for constructing Q&A pairs and for scoringcdments is in-
spired by the SUMMAC methodology (Mani et al. 2002a). Rathen creating ques-
tions for document sets (or topics) our questions are derfvem individual docu-
ments. Two annotators were independently instructed  tte@ documents from our
written corpus (test set, 31 documents) and create Q&A p&@sh annotator drafted
no more than ten questions and answers per document, rétaiisdcontent. Anno-
tators were asked to create factual-based questions wegthired an unambiguous
answer; these were typically who, what, where, when, hove gjyestions. The pur-
pose of using two annotators per document was to allow atorstto compare and
revise their question-answer pairs; this process was tegamtil a common agreed
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Snow, high winds and bitter disagreement yesterday futiherpered attempts t

(@)

tame Mount Etna, which is threatening to overrun the Sicitiawvn of Zafferana
with millions of tons of volcanic lava.

The wall of molten lava has come to a virtual halt 150 yardaiftbe first home in
the town, but officials said yesterday that its flow appeandthive picked up speed
further up the slope. A crust appears to have formed over theawic rubble,
but red-hot lava began creeping over it yesterday and intavatp orchard. Bad
weather dashed hopes of attempts to halt the flow during waaseen as a natural
lull in the lava’s momentum.
Some experts say that even if the eruption stopped todaghter pressure of lava
piled up behind for six miles would bring debris cascadingvdan to the town
anyway. Some estimate the volcano is pouring out one mitikmrs of debris g
day, at a rate of 15ft per second, from a fissure that openeddDacember.
The Italian army yesterday detonated nearly 400lb of dytmar&j500 feet ug
Mount Etna’s slopes. The explosives, which were descrilsamb¢hing more than
an experiment, were detonated just above a dam built in Jaand breached last
week. They succeeded in closing off the third of five undargobconduits formed
beneath the surface crust and through which red-hot magmden flowing. But
the teams later discovered that the conduit was dry, suggettat the lava had
already found a new course.

Rumours have been circulating that experts are bitterlyddiv over what to do
But in another experiment 50 two-ton concrete slabs are tohagned together
and dumped from a huge tilting steel platform about 6,75btve sea level. It
is hoped the slabs will block the conduit from which the maircé of the lava is
said to be bearing down “like a train”, causing it to break nd aool. High winds
and snowfalls have, however, grounded at a lower level tinegfal US Navy Sead
Stallion helicopters used to transport the slabs.

Prof Letterio Villari, a noted vulcanologist, said yestayche had “absolutely n

|}

faith whatsoever” in the plan. If Zafferana was saved from ldva, which could

flow for a year or more, it would be “a complete fluke”, he said.

Figure 4.6: Sample document from the written test set.
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upon set of questions was reached. Revisions typicallywedomerging and simplify-
ing questions to make them clearer, and in some casesrgphttjuestion into multiple
guestions. Rewording is another important revision. Thestjons must not contain
too much information about the content of the document, aecewevised until con-
cise. Documents for which too few questions were agreed @mohfor which the
guestions and answers were deemed too ambiguous by theatotsavere removed.
From a test set of 31 documents this left an evaluation sekafacuments with be-
tween five to eight concise questions per docurheRigure 4.5 shows the questions
and answers our annotators created for the document ind-iyar

For scoring our documents we adopt a more objective metherd aisking the an-
notator who constructed the questions to check the docuowmnpressions for the
answers. We recruit naive human subjects to answer theigagsaising the com-
pressed documents alone. The compressed document antbgsiese presented to
participants who are asked to answer the questions as legstah. At no point during
the evaluation is the source document shown to the subjacs; it the compression
is difficult to read, the participant has no point of refererc help them understand
the compression. This is a departure from previous evanatwithin text generation
tasks, where the source text is available at judgement timar case only the system
output is available.

We now present the details of our evaluation setup. The atialuis conducted
remotely over the Internet using a custom built web intexfdarticipants are recruited
through student mailing lists and the Language Experimeetssité. Upon loading
the web interface, participants are presented with a setsbfuictions that explain the
Q&A task and provide examples Subjects are first asked to read the compressed
document and then rate its readability on a seven point sdadee seven is excellent,
and one is terrible. Once a rating has been obtained questi@npresented one at
a time (the order of which is defined by the annotators) antigiaants are asked to
consult the document for the answer. Answers are writteectliy into a textfield on
the web interface which allows for free form text to be suletit Once a participant
provides an answer and confirms the answer, the interfa&e the answer to ensure it
is not modified later. This is necessary because later qunsstnay reveal information
which could help answer previous questions. A Latin squasggh is used to prevent

3Appendix B contains the full documents and question ansais p
“http:/Mww.language-experiments.org
SFull instructions and examples can be found in Appendix A.3.
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participants from seeing multiple treatments (compressi®f the same document
thus removing any learning effect.

The answers provided by the participants are scored agamnahswer key. Each
answer is marked with a score of one for a correct answer arafpe a incorrect
answer. In cases where two answers are required a score o &¥arded for each
correct answer. The score for a compressed document is érageof its individual
guestion scores.

4.4 Summary of Chapter

In this chapter we have presented a variety of methods famaatically and manu-
ally evaluating sentence compression systems. We haveeditsome of the prob-
lems of current sentence compression elicitation studidpaesented a more rigorous
paradigm for evaluating isolated sentences. Furthermageeviewed earlier proposed
measures for automatic evaluation and assessed whetlserdahe appropriate for the
compression task. Our results show that grammatical ogldiased F-score (Riezler
et al. 2003) correlates reliably with human judgements &od tan be used to mea-
sure compression performance automatically. This is ealheaseful during system
development for assessing quickly and effectively howeddht system configurations
impact compression performance. Another advantage ofabtelautomatic measure
is that much larger tests set can be used than the 32 sentesezes previous studies
allowing for significance tests to be performed.

We have also presented a method for evaluating documentressipns through
a question-answering paradigm. This includes a methogdimgcreating question-
answer pairs, presenting document compressions and ojestswer pairs to sub-
jects, and scoring the subjects’ answers. We have manageddte question-answer
pairs for six documents from our written compression corgash containing between
five to eight concise questions and answers. The Q&A evalaiudy allows us to
determine how well our compression systems preserve the imp®rtant informa-
tion from the source documents and whether the resultingpcessed document is
understandable by naive human judges.






Chapter 5
Integer Linear Programming

Before we present our compression models (Chapter 6), wepvallide a brief in-
troduction to the integer linear programming framework efhwve will adopt in later
chapters.

Mathematical Programming encompasses a set of tools feingobptimisation
problems. This chapter concentrates on two types of mattieshprogramming frame-
works: Linear Programming and Integer Linear Programmivigny practical optimi-
sation problems in operations research can be expressatwas programming prob-
lems; consequently considerable research has been ddwudteel efficient solving of
linear programs. An example of a business application wbaldhaximising profit in
a factory that manufactures a number of different producisithe same raw material
using the same resources (in fact we will use such an examgleeinext section to
describe the concepts of linear programming). IntegemlinpFogramming is an ex-
tension to linear programming which allows us to model a widage of real world
problems. For example, the Travelling Salesman ProblenP{T&n be formulated as
an integer linear programming problem.

We begin the chapter by introducing the terminology of linaad integer linear
programming, along with the algorithms required to solvesth problems. We then
demonstrate why these frameworks, in particular integesdr programming, are ben-
eficial for NLP.

5.1 Linear Programming

Linear programming (LP) problems are optimisation proldesith constraints. They
consist of three parts:

63
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¢ A linear function (theobjective functioh This is the function we wish to min-
imise or maximise. This can be a linear combination of marghdunctions.

e Decision variables. These are variables under our conthathvinfluence the
result of the objective function. These are the variablesmust optimise to
maximise (or minimise) the objective function.

e Constraints. The ability to include constraints is one of itt&in strengths of
the LP framework. Most problems will only allow the decisiariables to take
certain values. These restrictions are modelled by thetconts.

These terms are best demonstrated with a simple example fi@ke Winston and
Venkataramanan (2003).

Telfa Example Imagine the Telfa Corporation manufactures tables and €hdio
produce a table 1 hour of labour and 9 square board feet of ugjuired. Chairs
require 1 hour of labour and 5 square board feet of wood. Tedfee 6 hours of labour
and 45 square board feet of wood available. The profit made fach table is 8
GBP and 5 GBP for chairs. Determine the number of tables aaniscthat should be
manufactured to maximise Telfa’s profit.

First we must determine theecision variablesThese must represent the decisions
that need to be made. In our case we define:

X1 = number of tables manufactured
Xo = number of chairs manufactured

Our objective functions the value we wish to maximise or minimise — the profit.

Profit= 8x; + 5xo

The coefficient of a variable in the objective function isereéd to as thebject
function coefficientf the variable.

There are two constraints in this problem: we must not exé&hkdurs of labour
and no more than 45 square board feet of wood must be usedw&lsan not create
a negative amount of chairs or tables.
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Labour constraint x3 + X < 6
Wood constraint 9 + 5% < 45
Variable constraints xx > 0

X > 0

Once the decision variables, objective function and cairds have been deter-
mined we can express the LP model:

maxz = 8x1 + 5x2  (Objective function)

subject to (s.t.)

X1 + X2 < 6 (Labourconstraint)
9% + bxp < 45 (Wood constraint)
xx1 > 0
X > 0

5.1.1 Solving LP models

Two of the most basic concepts involved in solving LP proldesme thefeasibility
region andoptimal solution The optimal solution is one in which all the constraints
of the LP problem are satisfied and the objective functionirimmised or maximised.
A specification of the value for each decision variable i®nefd to as goint The
feasibility region for a LP is a region consisting of the sealb points that satisfy all
the constraints of the LP. The optimal solution lies withirstfeasibility region, it is
the point with the minimum or maximum objective functionwel

A set of points satisfying a single linear inequality (in aase a constraint) is a
half-space The feasibility region is defined by a the intersectiomoffor mlinear in-
equalities) half-spaces and formpalyhedron Our Telfa example forms a polyhedron
set (a polyhedral convex set) from the intersection of our fmnstraints. Figure 5.1a
shows the feasible region (the polyhedron enclosed by péirg, C, D) for the Telfa
example.

To find the optimal solution we graph a line (or hyperplanewdrich all points
have the same objective function value. In maximisatiorbjgmms it is called the
isoprofit lineand in minimisation problems thsocost line One isoprofit line is rep-
resented by the dashed black line in Figure 5.1a. Once wedravésoprofit line we
can find all other isoprofit lines by moving parallel to thegimial isoprofit line.
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10 T T T T T T 10

9x, + 5%, = 45 = LP’s feasible region 9+ 5, = 45

e = |P feasible point
= IP relaxation’s feasible regior

Optimal LP solution

Figure 5.1: Feasible region for the Telfa example

Theextreme pointsf the polyhedral set are defined as the intersections ofribe |
that form the boundaries of the polyhedral set (po#tB,C andD in Figure 5.1a).
It can be shown that any LP that has an optimal solution, hasxeteme point that
is globally optimal. Another important property of LPs isatithere are only a finite
number of extreme points, which is proportional to the nundfevariables and con-
straints. These two properties reduce the search space optimisation problem to
finding the extreme point with the highest profit or lowesttcos

Algorithms such as the simplex method (Dantzig 1963) ard ts&nd the optimal
solutions of LPs. The simplex method starts by computingndial extreme point and
tests its optimality. If some optimality condition is veeifi the algorithm terminates.
Otherwise the simplex method identifiadjacent extreme poin{gxtreme points that
lie on the same line segment) with a better objective functalue. Optimality of this
new solution is tested again, and the entire method is regesttil an optimal extreme
point is found. As there are only a finite number of extrementgofor a given LP, it
follows that the simplex method will terminate irfiaite number of iterations.

Many LP solvers (both commercial and free) rely on a the saxlgorithm to
solve large scale linear programs. This is despite its pawstacase behaviour. It is
possible to construct a LP for which the simplex algorithri take an exponential (in
the problem size) number of steps to solve. However, in mathe algorithm is very
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efficient and is found in many solvers providing solutione#igiently as worst-case
polynomial-time algorithms (e.g., interior points metsoéanderbei 2001).

The optimal solution for the Telfa exampleds= 122, x; = 2, %, = 3. Thus to
achieve a maximum profit of 41.25 GBP, they must build 3.7%&bnd 2.25 chairs.
This is obviously impossible as we would not expect peopleutpfractions of tables
and chairs. We therefore want to be able to constrain thelgmolsuch that the de-
cision variables can only take integer values. This can beduwith Integer Linear

Programming, described in the following section.

5.2 Integer Linear Programming

Integer linear programming (ILP) problems are LP problemsvhich some or all of
the variables are required to be non-negative integersy areeformulated in a similar
manner to LP problems but have the additional constrainththe decision variables
must take non-negative integer values. Many different $yplereal world problems
such asscheduling problemand thetravelling salesman problewan be modelled as
ILPs.

Let us now return to the Telfa problem which also requiresraeger solution. To
formulate it as an ILP model we merely add the constraints thand x, must be
integer. This gives:

maxz = 8x1 + 5%  (Objective function)

subject to (s.t.)

X1 + X < 6 (Labour constraint)
91 + 5Bxp < 45 (Wood constraint)
X1 > 0;xq integer
X2 > 0;%integer

In the LP model it can be proved that the optimal solutiondiesan extreme point
of the feasible region. This gave us two real numbers as thienapsolution to the
Telfa problem. When we define this problem as an ILP we only wostonsider the
points that are integer values. These points are shown & 1b as dots.
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5.2.1 Solving ILP problems

One might think that solving ILP problem would not be muchdw®arthan solving
linear programming problems. Unfortunately this is not¢hse: solving ILP problems
is NP-hard (Cormen et al. 2000).

A number of techniques have been developed to find a globmhajgolution to an
ILP problem. Two such techniques are the cutting planes odefGomory 1960) and
the branch-and-bound method (Land and Doig 1960). Botheddlare guaranteed
to find a global optimal solution. The cutting planes methddsaextra constraints to
slice parts of the feasible region until it contains onlyrerte points that are integer
points — however reducing the feasible region until it camaonly extreme integer
points can be a difficult or impossible process (NemhauseVdpisey 1988).

The branch-and-bound method involves solving a (potdylirge number of (re-
lated) linear programming problems to find the optimal iltegplution. This involves
relaxing the constraints that variables must be integrdlsaiving the resulting linear
program in the hope that the solution contains integer gwiat The linear program-
ming problem obtained from relaxing these constraints iieddheLP relaxation If
all the variables assume integer values then the solutiatses optimal for the ILP;
however, if this is not the case, the resulting solution mes an upper bound on the
optimal solution for the ILP. Typically the solution to th&Lrelaxation contains non-
integer variables. One naive strategy of obtaining an ertsglution would be to round
the variables to their nearest integer value. Unfortuathkis strategy is a poor choice
as the integer solutions it yields might not even be feasifilee branch-and-bound
strategy (Land and Doig 1960) is a cleverer approach. It tleeson-integer solutions
obtained from the relaxation to divide the ILP into sever® sub-problems. This
creates an enumeration tree in which the original relaxasahe root node and the
first sub-problems are child nodes. Sub-problems are atdxteed on the non-integer
solution for one variable at a time.

For example, the LP relaxation to the Telfa problem returs®lation of%3 for
variablexs, in this case two sub-problems are created, one with theti@onmisthat
x1 < 3 and the other with the constraxt > 4. Figure 5.2 shows the enumeration tree
resulting from dividing the LP relaxation into two sub-pteims.

These sub-problems are solved and the process is repedtied un

e the LP sub-problem returns integer solutions for all vadgab The first integral
solution found becomes the candidate solution and proadegver bound for
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LP Relaxation
=1 x,=375x%x,=225
z=41.25

X1 >4 X1 <3
Sub-problem 1 Sub-problem 3
=2 X, =4,%,=1.8
z=41

Figure 5.2: Telfa’s First Enumeration Tree; t represents the solving iteration.

the ILP. If a subsequent integer solution has a higher obgetlue than the
lower bound, it becomes the new candidate solution (andaWwerl bound is
modified accordingly).

e the LP sub-problem is infeasible; or

¢ the objective function value is less than the currently mopti candidate (the
lower bound).

The search method for the enumeration tree is typicallyldépdt as this allows us
to find feasible solutions to the ILP early, these give a lolaernd to the problem and
can be used to prune nodes from the tree. Figure 5.3 showstiefiumeration tree
for the Telfa problem. Thevalue represents the iteration for which each sub-problem
was solved. Using the branch-and-bound method we find theclredidate solution
on iteration five, which is then replaced by the solution fdwm the sixth iteration.
The sixth iteration solution is optimal; however, its opdility cannot be proved until
the seventh iteration; after which all sub-problems in themeeration tree have been
exhausted. The final solution to the Telfa problenz is 40, x; = 5, Xo = 0; thus to
achieve a maximum profit of 40 GBP, Telfa must manufacturdoetaand O chairs.

For the full details of the cutting planes and branch-androbmethods see Win-
ston and Venkataramanan (2003), Vanderbei (2001), or Nesanand Wolsey (1988).

Special Cases In general, the branch-and-bound methods have proved tebadst
successful in solving practical ILP problems. Howeverréhare special cases of prob-
lems which have more efficient solving strategies or spesaédlstructure that simpli-
fies solving.

0-1 ILP problems are a special case of ILP problem in whickailbles are bi-
nary. Such problems can be solved using a simplified brandhibaund technique
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=11 x,=3.75x,=225

LP Relaxation

z=41.25
X| 2 4 X) < 3
Sub-problem 1 Sub;p 3r0blein33
t=2 X =4,%x,=138 =7 X172 %=
z=41 z=39
LB =40
Xy >2 X, <1
Sub-problem 5
t=3 S“}"lf’m'?{)elm 4 t=4 | x,=444,x,=1
Heasible 2=140.55
X1 =5 x; <4
Sub-problem 6 Sub-problem 7
X1 =5,X=0 X =4,x,=1
1=6 z=40 t=35 z=37
LB=37 Candidate solution
Candidate solution

Figure 5.3: Telfa’'s Final Enumeration Tree; t represents the solving iteration, LB repre-

sents lower bound value.

called implicit enumeration. This simplifies both the braimg and bounding com-
ponents and can efficiently identify when a node in the enatiaar tree is infeasible
by exploiting the binary nature of the variables. Variablesnplicit enumeration can
either befixedvariables where their value is specified fiae variables whose value is
unspecified. For any node in the enumeration tree, a spdmficaf the values of the
free variables is known as@mmpletionof the node. For example, if a problem consists
of three variablexy, X2, X3 and we are at a node in the enumeration tree wkeire
fixed at 0, then one completion of the nodexis= 1, X3 = 1, another completion is
x2 = 0, x3 = 1. The different completions are the various combinatidresftee vari-
ables can form. The previous branch-and-bound technidigzlren relaxing the ILP
to the corresponding LP without integer constraints to esthe node whereas during
implicit enumeration the relaxation is not required. By kexjing the fact that the vari-
ables are binary it is possible to efficiently compute the bempletion of a node and
determine its feasibility.

First, the best completion of the node is found by settingftee variables to the
value (0 or 1) which makes the objective function largeshfax problems) or smallest
(in min problems). If this completion is feasible (no coastis are violated) then it
is the best feasible completion of the node and no furthendirimg of the node is
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required. If the best completion is not feasible then the letion gives us an upper
bound for the node. The bound can be used to eliminate the fnmaleconsideration
(i.e., if the bound is lower than the current candidate saarthe max case).

Next we determine if all the completions of the node are istela. For each
constraint in the problem we assign the free variables tdo#st value for satisfying
the constraint. If the constraint is not satisfied by this nfieasible completion we can
deduce the node has no feasible completion. For exampley ih@de has the fixed
variablex; = 1 and free variablesp, x3 and the problem has a constraint:

OX1 —IxXo+3x3 < 3

By settingx, = 1, x3 = 0 the left side of the constraint as small as possible. If this
completion does not satisfy the constraint then no congaietf the node can. In this
case 9- 1+ 0 < 3 does not hold, so the node can be eliminated from considerat
In general, if even one constraint can not be satisfied by @streasible completion,
then the node has no feasible completion and can be elimdinate

At this point if the node’s best completion is infeasible d@hdre exists feasible
completions for each constraint, we cannot deduce if the s a feasible comple-
tion or is infeasible until more variables are fixed. Thus, seéect a free variablg
to branch on, creating two sub-nodes: one with- 1 and another witkx; = 0. The
process then repeats itself by computing the best complefia new node and deter-
mining its feasibility.

Another special case of ILP problem are ones which hatetally unimodular
constraint matrix. These ILP problems can be solved diydwmtlthe LP relaxation as
the relaxation is guaranteed to result in an integer salutichis removes the need to
perform branch-and-bound as the problem can be treatedld® &nmatrix A is totally
unimodular if every square sub-matrix Afhas its determinant equal to @1 or —1.
Unfortunately the definition of total unimodularity doestr@lp us detect if a con-
straint matrix has the property. Evaluating the determimmdmevery square sub-matrix
is computationally prohibitive. However, it is known thabplems which can be for-
mulated as the minimum cost network flow problem (MCNFP) hatadly unimodular
constraint matrix. Generally, the more the constraint imdtroks totally unimodular
the easier the problem is to solve by branch-and-bound rdsthiherefore, it is good
practice to formulate an ILP in which as many variables asipies have coefficients
of 0, +1 or —1 in the constraints.
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5.2.2 Uses of Discrete Variables

We have shown how linear programming models can be convéotéiteger linear
programming models in which all the variables must takegeteralues. The obvious
use of discrete variables is when we want to represent descpeantities (e.g., the
number of chairs to build), however, for NLP this is not theshapplicable use. In
NLP it is more useful to be able to determine if different ans or decisions should
be taken rather than determining numeric quantities ofaldes. For example, we
may wish to know what part-of-speech tag should be assigorea given word (each
decision would be a part-of-speech assignment) or if a wbhadilsl be included in a
compression.

Integer variables are frequently used in ILP to representhvtiecision should be
made. Typically these variables are constrained to takéwtbevalues, zero or one.
Such variables are known as 0-1 variables. For example,mppession a variable
could be used to represent if a certain word should be in timepcession where a
value of 0 would represent the word being dropped from thepression whereas a
value of 1 would indicate the word is included in the compi@ssAlthough decision
variables are usually 0-1 variables they need not be, fanpi@the variable could be
constrained to take a value from zero, one or two.

Indicator variables are another use for discrete variablégese are used in cases
where extra conditions must be imposed on a model. To acesmitlis it maybe
necessary to introduce additional 0—-1 variables whichiaketl to other variables to
indicate certain states. For example, it would be possiblatroduce a single 0-1
variable to represent a combination of two words being idetliin the compression.

Having introduced these 0-1 variables it is now possibleprasent logical con-
nections between different decisions through linear cairgs involving the variables.
Many different types of logical condition can be imposechgstonstraints. Table 5.1
lists some useful conditions which can be modelled.

Another useful condition to express is transitivity, i.eif and only if x andy’. It
is often thought that such a logical condition can only beregged as a polynomial
expression of 0-1 variables.

Xy=2

However it is possible to replace this polynomial expressigth the linear con-
straints (Williams 1999):
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Condition | Statement Constraint
Implication | if xtheny y—x>0
Iff xif and only ify x—y=0
ORrR xoryorz X+y+z>1
XOR X XOry Xor z X+y+z=1
AND x andy x=1y=1
NoT notx 1-x=1

Table 5.1: How to represent various logical conditions using 0-1 variables and con-

straints in ILP. X, y, Zare 0-1 variables.

(1-2)+x>1
(1-2+y=1
z+(1-x)+(1-y) >1

This can be extended easily to model an indicator variablehwiepresents if a set
of 0—1 variables take certain values.

The ability to incorporate logical conditions through ctamts will allow us to
instill more linguistic and semantic knowledge into our goession models. This will
be shown in Chapter 6.

5.2.3 Constraint Programming

Constraint Programming (CP) and Integer Linear Programmiagesmany similari-
ties, in particular both allow the modelling of constrainter a set of variables. In CP
each variable has a finite domain of possible values, thikldmeiintegers, real num-
bers or even sets of values. Constraints are used to resigigtdssible combinations
of values the variables can take much like in ILP. Howeves,dbnstraint language of
CP is much richer than the linear constraints in ILP; constsaneed not be expressed
only as linear inequalities. A greater variety of constraiperators and relations are
available (Williams and Wilson 1998), suchas >, <, >, <, %, \, subsetsuperset
union intersection membey all_different OR, AND andXOR It is possible to model
these CP constraints in ILP by transforming them, with vagydegrees of difficultly,
to linear constraints involving integer variables. Howe\@eP provides a greater ex-
pressive power as it allows for these constraints diredttys representation can make
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problems easier to model and sometimes easier to solve diue toore concise repre-
sentation, that is problems can be expressed with fewetreans and variables than
in ILP.

Constraint Programming is often used when a quick feasiliigien to a problem
is required rather than a provably optimal solution. A fesssolution is found using
constraint propagatiorwhereby the values of variables (or domains of variables) is
reduced using information from the constraints. For exan{tken from Williams
and Wilson (1998)), lex, y, z be integer variables defined in the rarjgel0] and let
the constraints bg < zandx =y+z We can deduce that< 10 andz > 1 from
the constrainy < z. Combining this withx = y+ z we can deduce that> 2,y < 9
andz < 10. Thus the domains of the variables can be revised443,10], y € [1, 8],
ze [2,9].

Itis also possible to specify an objective function. Whenlajective function is in-
troduced solutions are usually found via a tree search airtolthe branch-and-bound
used in ILP. This depends on having a good bound on the olgeittnction (Lustig
and Puget 2001). For example, assume that our objectivensrionise the function
9(x1,X2,...,X,) and we know the lower bound, Before optimisation begins, we must
first find a feasible solution (ignoring the objective fulct) which determines the up-
per boundU of the objective function. These two bounds provide us wittarge
the optimal objective function must fall within. Using a by search on the objec-
tive function we can find the optimal value. The procedure potes the midpoint
M = (U +L)/2 of the bounds and then solves a CP by taking the original enobl
(without objective function) and adding the constrajfy, Xo,...,x3) < M. If a feasi-
ble solution is found then the upper bound is updated andghrck continues with a
new midpoint. If the problem is infeasible then the lower bdis updated and search
continues with a new midpoint. The main difference betwdas procedure and the
brand-and-bound procedure of ILP is that in CP we stress tirelséor feasible solu-
tions, whereas branch-and-bound procedures usually esigghianproving the lower
bound (Lustig and Puget 2001).

Although CP may appear more desirable than ILP due to its sgwepower and
the ability to incorporate an objective function, it is noithout its problems. When
constraints contain many variables, constraint propagatecomes ineffective; this
stems from the history of the CP community who mainly conspteblems in which
the constraints only contain two variables each (Hooker220®bjective functions
tend to contain many variables as they represent the costwaird incurred by making
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different decisions. Thus CP is less desirable for modeltirapblems which involve
large objective functions.

5.3 Integer Linear Programming in NLP

Our presentation of ILP has been very general with littleerefice to NLP. In this
section we describe how ILP has been used in NLP and the =enefin bring.

Integer Linear Programming has recently attracted mu@madn in the NLP com-
munity. ILP techniques have been applied to several taskijding machine trans-
lation (Germann et al. 2004), relation extraction (Roth &itd 2004), semantic role
labelling (Punyakanok et al. 2004), the generation of ralitections (Marciniak and
Strube 2005), temporal link analysis (Bramsen et al. 206&) partitioning (Barzilay
and Lapata 2006), syntactic parsing (Riedel and Clarke 2006lti-document sum-
marisation (McDonald 2007) and coreference resolutiom{®and Baldridge 2007).

Most of these approaches use ILP to model problems in a motmgmanner.
Capturing the global properties of a problem can improve aet®dccuracy as it is
able to represent the long-range dependencies of the pnobiethis section we give
an overview of previous NLP work using ILP and describe tts&$ao which ILP has
been applied.

It is important to clarify what we mean kglobal since it has multiple senses de-
pending on its context. When referring to optimisatiomgl@bal method seeks to find
the globally best solution of the model in the presence oftiplel local optima. By
contrast, global in the sense giobal models means being able to perform decisions
based on evidence beyond the local scope (i.e., beyondeedjaords, part-of-speech,
constituents ). In this section we will use the tesract inferencéo refer to a technique
which finds the globally best solution under the model (rathan global optimisa-
tion). And global will be reserved to the modelling senseréfioreglobal inference
refers to being able to incorporate more global informationng inference.

Recall that many tasks in natural language processing cdraimed as mapping
from inputsx € X to outputsy € . For example, in the case of sentence compression
X € X is a source sentence apd ¢ its corresponding compression.
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5.3.1 Global Constraints with ILP

In the sequence labelling setting (e.qg., part-of-speegtjing and chunking) there are
existing techniques for training local models under thebglostructure of the prob-
lem which provide exact and tractable inference. Two paptéehniques are hidden
Markov Models (HMMs) and conditional random fields (CRFs,fed¥ et al. 2001).
These models benefit from being trained under the globattsire of the problem, by
this we mean the sequential (or structural) constrainte®fasks are enforced. For ex-
ample, each word must be assigned exactly one part-of-spagor chunk sequences
cannot overlap. However, HMMs and CRFs force us to make stassgmptions of
conditional independence between variables. This is dubegavidely used Viterbi
algorithm which provides efficient and exact inference. &ssumptions are not al-
ways justifiable as many real world problems exhibit comsleMcture and long range
dependencies which we are unable to capture with local rsodielboth HMMs and
CRFs low-order Markov assumptions (typically first-orderg anade on the output
structure, thus limiting us to consider the output sequéocally, i.e., that the current
part-of-speech tag for a word only depends on the previayddager histories can be
difficult to encode. In many tasks and domains there are hagdfoglobal constraints
on the output sequence that are easily motivated by commuse ggpically through
linguistic understanding or domain knowledge. One exanopltis may be, that a
sentence must contain a verb. It is, therefore, desirablt@ve models which can look
more globally at the output structure.

Reranking Reranking is one method that has been used to incorporatalgion-
straints on the output (Collins 2000; Shen et al. 2004). Itsvation is to provide a
method of incorporating constraints which would othervbgeawkward to encode in
existing models.

In order to perform reranking, a base model, which is typyclalcal (e.g., HMM,
CREF or perceptron), produces a set of candidate solutionsdahn input. Accompa-
nying these solutions are their respective probabilitiesiodel scores which define a
natural ranking on the solutions. This ranked list of sa@o$ is termed the-best list.
A second model (the reranker) then attempts to improve anitiial ranking using
more global features or constraints over the output spabe.tdsk of the reranker is
to pick the best global solution from timebest list.

The advantage of reranking is that it provides a quick metiloodncorporating
global constraints on the output and is relatively easy fglé@ment. It has been shown
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to improve parsing accuracy (Collins 2000) and machine latios quality (Shen et al.
2004). However it is not without its drawbacks. Rerankingessitive to the size of
the n-best list. The performance of the reranker is limited by Itlase model. If the
n-best list does not contain good solutions then the reranitimot be able to find any
better solutions. This is very task dependent, in parsing&ilidate parses needed
to be considered on average to see a notable improvementcuraay whereas in
machine translation at least 1000 candidates must be @pslido see an increase in
performance. Generally, the sizer§rows with the size of the output spage

Another problem is that finding a solution using rerankinglaees a single pro-
cess with a two stage process. In the first stage, the basel modegenerate the
candidate solutions thus pruning the search space (oi@olspace); the second stage
then selects the best candidate according to the rerankiaigimThus this method has
multiple approximations; it is possible that good solusi@atcording to the reranker
will be pruned in the first stage. Reranking relies on the Imasdel being able to pro-
ducen-best solutions which contain globally good answers. i fln't the case then
the reranker will not be able to find better solutions.

Integer Linear Programming Another method of incorporating global constraints is
by reformulating the inference procedure as an ILP. Thiawedirable to the reranking
method as global constraints can be incorporated into thaeirio a single inference
process rather than as part of a two stage process. ILP allevis introduce new
local and global constraints that act over the output spadenaodel the long-range
dependencies of the problem in a natural and systematimfash

In the context of CRFs, Roth and Yih (2005) reformulate theNitalgorithm as an
ILP which allows them to extend CRF models to support genenagtraint structures
(i.e., more global and non-sequential constraints). Sigadly inference in CRFs (and
HMMs) can be viewed as a minimum cost network flow problem (M@NEnd can
be easily formulated as an ILP. This formulation also resuita totally unimodular
constraint matrix and thus can be solved by the LP relaxatiithout resorting to
specific ILP solving methods (see Section 5.2.1 for details)

Roth and Yih (2005) test their ILP inference in CRFs using teen&ntic Role
Labelling (SRL) task which attempts to discover the verpuanent structure of a
sentence. Asemantic roles the relationship that a syntactic constituent has with a
predicate. Example of roles arguments include Agent, Ratlastrument, Locative,
Temporal, Manner and Cause. Sentence (1) shows the semaescannotation for
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Label Description Label Description
Vv Verb A3 Attribute
AO Acceptor AM-MOD Modal

Al Thing accepted AM-NEG  Negation
A2 Accepted-from

Table 5.2: Semantic Role Labels for the verb accept as defined by the PropBank Frame

Scheme.

the predicataccepttaken from the PropBank corpus.

(1) [a0 He] [am-mop would] [am-nec N't] [ v accepd [ a1 anything of valuefrom|[ a2
those he was writing about].

The labels in the case aicceptare defined in the PropBank Frame scheme according
to Table 5.2.

When the task is framed as a sequence labelling problem weiearndentifying
the segments (arguments) as attempting to label conseautixds as being part of a
segment or not. This can be represented at the word leved aBtO representation.
In this case, we label each word as either beginn®)@ text segment, being insidie)(

a text segment but not the first word of the segment, or beitgariO) a text segment.
TheOlabel is assigned all words we are not interested in. In tise cd semantic role
labelling where we must not only segment the sentence botae! the segments we
can append the label to tB#0 representation. For example, to signifyAhargument

we would have the labeB-Al1 andl-A1 . When adjacent text segments cannot share
the same label we can simplify the representation td@heepresentation.

Using this representation, Roth and Yih (2005) reformuthte Viterbi algorithm
used in CRFs as an ILP to incorporate linguistically motidatenstraints. Examples
of these constraints include: no duplicate verb argumergs @ verb cannot have
two Al arguments), all verbs must have at least one argument, aaticsving invalid
arguments for a verb among others. The constraints can lokhagl during training
and testing, however, Roth and Yih observe the best periocewhen they apply the
additional constraint at test time after training withdug tonstraints.

Riedel and Clarke (2006) augment a dependency parsing mattdinguistically
motivated constraints to creatermreglobal model by reformulating the inference pro-
cess as an ILP. Dependency parsing is the task of attachirgdswm their arguments,
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for example verbs are attached to their objects and subjddts output of a depen-
dency parser is a dependency tree in which each word depenelsaatly one parent
or the dummy root symbol. Inference in dependency parsindeisds made tractable
by assuming a first-order factorisation (Eisner 1996) inchhattachment decisions
are made independently of one another. McDonald et al. @0&0ow that using a
first-order factorisation inference can be performed gligband exactly by solving
the maximum spanning tree. The resulting tree is guararitebd a structurally valid
dependency tree and the best solutions with respect to thielmd@he factorisation,
however, often causes the output to contain linguisticreras attachment decisions
are made independently of one another. For example, a veit be attached to more
than one subject or nouns and verbs may be coordinated. Sapkrpes cannot be
modelled with a first-order factorisation.

Riedel and Clarke (2006) reformulate the maximum spannieg problem as an
ILP and introduce additional linguistic constraints whiatt over the output. The
resulting model uses these constraints to disallow depaydeces which do not con-
form to certain linguistic constraints. For example onestaaint states: “heads are not
allowed to have more than one outgoing edge labdlled all | in the set of labels”.
This constraint covers situations such as ensuring thdisvieave no more than one
subject. The additional constraints ensure the resultepeddency trees are linguisti-
cally correct and contain fewer errors.

5.3.2 ILP for Arbitrary Problem Structure

In some problems the task is not easily mapped into sequabediihg or other set-
tings with well understood and efficient decoding algorithsuch as Viterbi or the
maximum spanning tree. However, ILP is capable handlingiatyeof problems pro-
vided the objective and constraints can be expressed as funections.

Rather than tackling the whole problem of mappikignto ¢, many approaches
break the mapping into a series of isolated decisions. Tlaikesthe task amenable
to a variety of “simple” learning algorithms. Local classifs, such as the percep-
tron (Rosenblatt 1988) and support vector machines (Vap@B8), can be used to
predict each “simple” decision without knowledge of thedmter task. However, these
local classifiers have no knowledge of the global structdréhe problem and thus
their collective output can be inconsistent and contradyctUsing ILP, it is possible
to perform global inference over the classifier's outputistensuring that the output’s
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structure is consistent and correct.

We will demonstrate this using the aggregation task fronur@tianguage gener-
ation (Barzilay and Lapata 2006). In sentence generaticongat planner provides
a set of entities which must appear in the generated docunfeaggregation com-
ponent takes these entities as input and clusters (or agg@ghem such that each
cluster corresponds to a sentence. Entities from the sans¢eclwill be mentioned
in same generated sentence. The aggregation is formulatadset partitioning task
where the goal is to find a cluster of the input entities thaximées a global utility
function. This can be viewed as mapping from a set of entitiesy to a partitioning
of non-empty subsetgse 9 such that each entity appears in exactly one subset. They
model this task as a series of local decisions in which a ldeskifier predicts whether
two entities should be aggregated based on their similtitijcient exact algorithms
do not exist for solving set partitioning problems (Cormerle000), which are NP-
complete and thus typically solved approximately withouposing structure on the
output. Solving this problem greedily (without imposingyastructure) using solely a
local model can lead to an inconsistent partitioning. Fanegle, transitivity may not
hold; entityA could be aggregated with entiBawhich in turn is aggregated with entity
C, however entitie\ andC are not aggregated. Barzilay and Lapata (2006) alleviate
these problems by using ILP to perform inference over thallolassifier model with a
set of structural constraints which ensure that the globgitmpning is consistent (i.e.,
transitivity holds). This provides exact and global infeze over the output which was
not possible in the greedy case.

5.3.3 Combining Multiple Classifiers with ILP

Traditionally, NLP applications are implemented using sceale of classifiers in which
the output representation is built incrementally and thigwouof one classifier serves
as input to the next. This process is repeated until the dugpuesentation is reached.
For example a simple pipeline for relation extraction migiblve performing named
entity recognition and then using the result as input to atieh extraction module.
A major problem with the pipeline approach is that classsfierust blindly trust the
output of earlier classifiers even when there may be evidentiee contrary — this is
especially true if the tasks being performed are strongtyetated with one another.
Consider for instance sentence (2):

(2)  John Doe has worked for many airports throughout his kfe is currently
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employed by JFK.

Here, a hypothetical named entity recogniser may ldbéh Doeand JFK asperson
This labelling is then passed on to a relation extraction u®evhich from the sen-
tence alone has strong evidence thataak for relation exists betweesiohn Doeand
JFK However, despite this evidence, it must label the entity ¢iferently as awork
for relation takepersonandlocationas its arguments and not tyersons This prob-
lem is common in pipeline architectures; they suffer hugetyn error propagation
as later classifiers have no means of informing earlier glass of possible errors or
inconsistencies.

Integer Linear Programming has been used to combine loass$ifiers in a global
manner thus removing the reliance on the pipeline. Such proaph has been used for
generating route directions (Marciniak and Strube 2008!) rahation extraction (Roth
and Yih 2004). Roth and Yih (2004) use ILP to combine the ougpa named entity
identifier and relation identifier. Given a sentence, ILPvtes global and exact in-
ference over all possible classifications that could in #@ence. Taking sentence (2)
as an example, the objective function would contain the stitheoscores for all pos-
sible labellings forJohn DoeandJFK plus the scores of all possible relations between
those labellings. A set of constraints help model the stingodf the problem to ensure
the output is valid. This disallows labelling both entitespersonand selecting the
relationwork for. Modelling the problem in this manner allows the relatiotragtion
scores to help resolve the ambiguity in labellidgK which will have relatively high
scores for being labelled eithpersonor location

5.3.4 |ILP for Exact Inference

While most uses of ILP in NLP focus on combining the output oftiple local classi-
fiers to find global solutions or producing more global mogdstsne work has used ILP
solely for inference without extending the model with lingjic or other constraints.
Germann et al. (2004) and McDonald (2007) have comparedajppate inference
algorithms against the exact solution provided by ILP foo MP-hard problems: ma-
chine translation and multi-document summarisation. bEséhcases the sheer scale
of the problem makes inference intractable and approximlgiarithms are often used
to ensure speed and tractability. ILP is a prime candidatéhiese kinds of problems
since it is suited to solving NP-hard problems exactly,@ltjh solve time is sacrificed
to reach optimality.
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Germann et al. (2004) compare the speed and output qualibyexd decoders for
statistical machine translation (SMT) using the IBM traisin Model 4 (Brown et al.
1993). SMT is framed as the Travelling Salesman Problem JT8fere choosing a
good word order for the output is likened to determining adyd&P tour. They find
that the ILP becomes intractable due to the sub-tour elinonastrategy employed
which requires an exponential number of constraints beétmavoid subtours.

The multi-document summarisation problem is framed astatpsentences from
multiple related documents to form a general summary. Tleiralele properties for
a summary are that: it is relevant for its purpose, it corgaio redundant sentences
and that its length is bounded by some upper limit. McDon2007) treats the task as
optimising all these properties jointly, and proves thabgll inference is NP-hard. The
output of three global inference algorithms are compardts€ are a greedy approx-
imate method, a dynamic programming approach based on@wdub the knapsack
problem, and an ILP formulation of the knapsack problem. e\s that the dynamic
programming approach provides near optimal results anieésoauch better than the
exact ILP method which is feasible for smaller problems.

5.3.5 ILP in Other Scenarios

Dras (1999) develops a document paraphrasing model usiagrte key premise of
his work is that in some cases one may want to rewrite a doctgteas to conform

to some global constraints such as length, readabilitytyde.s The proposed model
has three ingredients: a set of sentence-level paraphi@seswriting the text, a set

of global constraints, and an objective function which diiees the effect incurred by
the paraphrases. Under this formulation, ILP can be usedléztswhich paraphrases
to apply so that the global constraints are satisfied. Thetcaints are focused on:
length, readability, lexical density (Halliday 1985) anariety in sentence structure.
Paraphrase generation falls outside the scope of the ILRIrosentence rewrite op-
erations are mainly syntactic and provided by a module basedgynchronous tree
adjoining grammar (S-TAG). Unfortunately, only a prootaincept is presented; im-
plementation and evaluation of this module are left to feitarork.
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5.4 Summary of Chapter

In this chapter we have presented linear programming (LB)rsteger linear program-
ming (ILP). LP and ILP are flexible frameworks for modellingnous optimisation
problems. ILP problems consist of three parts: a linear aibje function, a set of
decision variables, and a set of linear constraints. Thetcaints are flexible, easy to
formulate and can represent a variety of real world properti

We provided an overview of the application of ILP to variousMproblems. This
outlined some of the properties which make ILP an appeatengéwork, in particular
how constraints can be used to enforce global structure avigms.






Chapter 6
ILP for Compression

Sentence compression has been expressed in a variety afl&dioms using either lex-
ical information, syntactic information or both. Despitdgfefences in formulation,
all these approaches model the compression process losi@gnformation. For in-
stance, in order to decide which words to drop, they exphddrimation about adjacent
words or constituents. Local models can do a good job at miagugrammatical com-
pressions, however they are somewhat limited in scope $iregecannot incorporate
global constraints on the compression output. Such constraimsider the sentence
as a whole instead of isolated linguistic units (words orstibnents). To give a con-
crete example we may want to ensure that each target congméss a verb, provided
that the source had one in the first place. Or that verbal aggisrare present in the
compression. Or that pronouns are retained. Such constraie fairly intuitive and
can be used to instill not only linguistic but also task spednformation into the
model. For example, an application which compresses telzetdisplayed on small
screens would presumably have a higher compression rateatlsgstem generating
subtitles from spoken text. A global constraint could fotice former system to gen-
erate compressions with a fixed rate or a fixed number of words.

Existing approaches do not model global properties of thapression problem
for a good reason. The decoding process for finding the besprassion for a source
sentence given the space of all possible compressions camleeintractable for too
many constraints and overly long sentences. In cases wherdecoding problem
cannot be solved efficiently using dynamic programming, ppreximate search is
used. For example, in the noisy-channel approach of TurndrGharniak (2005),
the decoder first searches for the best combination of rolepply. As it traverses
the list of compression rules, it removes sentences outsgl@00 best compressions

85
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(according to the channel model). This list is eventualiptated to 25 compressions.

In this chapter we propose a novel framework for sentencepcession that takes
into account local and global constraints and finds an optaolaition. Our formula-
tion uses many of the integer linear programming (ILP) téghes discussed in Chap-
ter 5. Specifically, we show how previously proposed modatsze recast as integer
linear programs. We extend these models with constraintshwhie express as linear
inequalities. Decoding amounts to finding the best solugmen a linear (scoring)
function and a set of linear constraints that can be eithaajlor local. Our con-
straints are syntactically and semantically motivated designed to bring less local
knowledge into the model and help preserve the meaning cfdbece sentence. Pre-
vious work has identified several important features forabmpression task (Knight
and Marcu 2002; McDonald 2006); however, the use of comggauring the search
process is novel to our knowledge.

Although ILP has been used in previous work (see Chapter$gpplication to
generation is not widespread. Barzilay and Lapata (2008)IluB for aggregation, a
subtask within generation. Our work however tackles the lelggneration pipeline
of sentence compression including content selection arfdcgurealisation. Our ILP
systems are end-to-end systems in which the input is an ymessed sentence and
the output is a compressed sentence. Contrary to most peewiotk (Roth and Yih
(2005) are an exception) we do joint inference and learniitigimthe ILP framework
including learning in the presence of our constraints.

We present three compression models from Chapter 2 recakeifLP frame-
work. These models are representative of an unsupervised;supervised and fully
supervised learning approach. This allows us to perforrmapawison across learning
paradigms and assess the impact of our constraints on thedeisn

Finally, we introduce a series of constraints designed suenthe compressions
are structurally and semantically valid. The first set ofstaaints are concerned with
relations between modifier and head words. We then look &asea wide constraints
such as verb argument structure. Our final set of constraomsern discourse infor-
mation and are explored in more detail in the next chapter.

6.1 Compression Models

In this section we recap three compression models from Chaptéich we reformu-
late as integer linear programs; and present our compresslated global constraints
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in Section 6.2. All the constraints are derived from the ¢adicondition identities
presented in Section 5.2.2; these allow us to build simglecé conditions into our
models through 0-1 variables.

The first model is a simple language model which has been usadaseline in
previous research (Knight and Marcu 2002). Our second medsised on Hori and
Furui (2004); it combines a language model with a corpustasgnificance scoring
function (we omit here the confidence score derived from fieesh recogniser since
our models are applied to text only). This model requires alsamount of parallel
data to learn weights for the language model and the signifeacore.

Our third model uses a discriminative large margin framaw@d4icDonald 2006),
is fully supervised and trained on a larger parallel corpus.

6.1.1 Language Model

A language model is perhaps the simplest model that sprmgsind. It does not
require a parallel corpus (although a relatively large nimguoial corpus is necessary
for training), and will naturally prefer short sentenceddnger ones. Furthermore, a
language model can be used to drop words that are eithegudrd or unseen in the
training corpus. Knight and Marcu (2002) use a bigram lagguaodel as a baseline
against their noisy-channel and decision-tree models.

Let X = X1,X2,...,Xy denote a source sentence for which we wish to generate a
target compression. We introduce a decision variable foheerd in the source and
constrain it to be binary; a value of O represents a word béiogped, whereas a value
of 1 includes the word in the target compression. Let:

€l...n|

- J 1 ifxisinthe compressionVi
'] 0 otherwise

If we were using a unigram language model, our objective tionovould max-
imise the overall sum of the decision variables (i.e., wpndsltiplied by their unigram
probabilities (all probabilities throughout this chapéee log-transformed):

maxiéi -P(x) (6.1)

Thus, if aword is selected, its corresponddgs given a value of 1, and its probability
P(x;) according to the language model will be counted in our tatafes.

A unigram language model will probably generate many ungnatrical compres-
sions. We therefore use a more context-aware model in oecbobg function, namely
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a trigram model. Dynamic programming would be typically dise decode a lan-
guage model by traversing the sentence in a left-to-rightmea Such an algorithm
is efficient and provides all the context required for a conimal language model.
However, it can be difficult or impossible to incorporate straints into such a model
as decisions on word inclusion cannot extend beyond a thoee window. By formu-
lating the decoding process for a trigram language modehastager linear program
we are able to take into account constraints that affect tingpcessed sentence more
globally. This process is a much more involved task than enthigram case where
there is no context, instead we must now make decisions baseerd sequences
rather than isolated words. We first create some additioeestbn variables:

1 if x; starts the compression
aj = _ Vie[l...n]
otherwise
1 if sequence;,x; ends
Bij = the compression Vie[0...n—1]
0 otherwise Vieli+1...n|

1 if sequenceq,Xj,xx Vie[0...n—2]
Yik = is in the compressionVj € [i+1...n—1]
0 otherwise vke[j+1...n]

Our objective function is given in Equation (6.2). This i® tbum of all possible tri-
grams that can occur in all compressions of the source semteneres represents the
‘start’ token and; is theith word in sentencg. Equation (6.3) constrains the decision
variables to be binary.

n
maxz = Zai-P(xi\starl)
i=
n-2 n-1 n

P i Xi
LIPS

n-1 n
+ Bij - P(endx;, X;) (6.2)
2,27 |
subject to:
&, ai, Bij,Yik =0o0r1 (6.3)

The objective function in (6.2) allows any combination afjitams to be selected.
This means that invalid trigram sequences (e.g., two or mr@yems containing the
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‘end’ token) could appear in the target compression. Wedatlos situation by intro-
ducingsequential constraint®n the decision variables, yijk, aj, andf;j;) that restrict
the set of allowable trigram combinations.

Constraint 1  Exactly one word can begin a sentence.

n

_;ai =1 (6.4)

Constraint 2 If a word is included in the sentence it must either start #r@ence or
be preceded by two other words or one other word and the " stden xg.

k—2k-1
O — Ok — Yijk =0 (6.5)
2,2,
Vk:ke[l...n|

Constraint 3 If a word is included in the sentence it must either be preddnyeone
word and followed by another or it must be preceded by one w&oddend the sentence.

ji-1 n j—1
5 — K-S Bij=0 6.6
J i; k:JerlyIJk i; B” ( )

Vitjell...n|

Constraint 4  If a word is in the sentence it must be followed by two wordsaif f
lowed by one word and then the end of the sentence or it mustdseged by one
word and end the sentence.

n-1 n n i—1
oi — Yijk — Bij— > Bhi=0 (6.7)
j—%lk:%l ! j—lz+1 hZO |

Viiie[l...n]

Constraint 5  Exactly one word pair can end the sentence.

n-1 n

% > Bj=1 (6.8)
i=0 j=1+1

The sequential constraints described above ensure thaetwnd order factorisation
(for trigrams) holds and are different from our compressspecific constraints which
are presented in Section 6.2.

Unless normalised by sentence length, a language modelatilrally prefer one-
word output. This normalisation is however non-linear aadret be incorporated into
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our ILP formulation. Instead, we impose a constraint on émgth of the compressed
sentence. Equation (6.9) below forces the compressionriaicoat leasb tokens.

_iai > b (6.9)

Alternatively, we could force the compression to be exabttpkens (by substituting
the inequality with an equality in (6.9)) or to be less tHatokens (by replacing>
with <).! The constraint in (6.9) is language model-specific and isiget elsewhere.

6.1.2 Significance Model

The language model just described has no notion of whichecwmtords to include in
the compression and thus prefers words it has seen befotevdds or constituents
will be of different relative importance in different docemts or even sentences.

Inspired by Hori and Furui (2004), we add to our objectivediion (see Equa-
tion (6.2)) a significance score designed to highlight intgarr content words. In
Hori and Furui’s original formulation each word is weightieg a score similar to un-
normalisedf xidf. The significance score is not applied indiscriminatelyltovards
in a sentence but solely to topic-related words, namely s@uma verbs. Our score dif-
fers in one respect. It combines document-level with sergdevel significance. So
in addition totf *xidf, each word is weighted by its level of embedding in the syitac
tree.

Intuitively, in a sentence with multiply nested clauses,rendeeply embedded
clauses tend to carry more semantic content. This is illtestr in Figure 6.1 which
depicts the clause embedding for the senterMe Field has said he will resign if he
is not reselected, a move which could divide the party naflph Here, the most
important information is conveyed by clauses(8e will resign and S (if he is not
reselectediwhich are embedded. Accordingly, we should give more weighvords
found in these clauses than in the main clausei{S-igure 6.1). A simple way to
enforce this is to give clauses weight proportional to theellef embedding. Our
modified significance score becomes:

[(x) :IN- fi Iog%’l (6.10)

wherex; is a topic word,f; andF; are the frequency of; in the document and corpus
respectivelyF; is the sum of all topic words in the corpusis the number of clause

1Compression rate can be also limited to a range by includingtequality constraints.
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St
S
Mr Field has said
S
he will resign
Sy
if he is not reselected
, a move
SBAR
which could divide the party nationally

Figure 6.1: The clause embedding of the sentence “Mr Field has said he will resign
if he is not reselected, a move which could divide the party nationally”; nested boxes

correspond to nested clauses.

constituents abovi, andN is the deepest level of clause embeddifkg.andF are
estimated from a large document collectidi,is document-specific, Wherez# 5
sentence-specific. So, in Figure 6.1 the t%m 1.0 (4/4) for clausé&y, 0.75 (3/4) for
clauseSs, and so on. Individual words inherit their weight from thelauses.

The modified objective function with the significance scargiven below:

maxz = .iéi-)\I(xi)-i-iai-P(xﬂstarl)

n-2 n-1 n
+Z > > ik PO, xj)
i=1j=I+1k=]+1

n-1 n

+ ij - P(endx;, x; 6.11
i;j;ﬂﬁj (endx;, X)) (6.11)

We also add a weighting factoh) to the objective, in order to counterbalance the
importance of the language model and the significance sGbreweight is tuned on a
small parallel corpus. The sequential constraints fromatiqus (6.4)—(6.8) are again
used to ensure that the trigrams are combined in a valid way.
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6.1.3 Discriminative Model

For our discriminative model we use the model presented bRpdmald (2006). This
model uses a large-margin learning framework coupled witbadure set defined on
compression bigrams and syntactic structure.

We briefly recap the model. Full details of the model inclgdthe features and
learning algorithm are discussed in Section 2.2.3. )X etx,,...,X, denote a source
sentence with a target compressipr= y1,...,Yym Where eachyj occurs inx. The
functionL(y;) € {1...n} maps wordy; in the target compression to the index of the
word in the source sentence, We also include the constraint thiaty;) < L(yi+1)
which forces each word ir to occur at most once in the compressyoriet the score
of a compression for a sentenca be:

s(x,y) (6.12)

This score is factored using a first-order Markov assumptiothe words in the target

compression to give:
lyl
s(x,y) = _XZS(X, L(yj-1),L(yj)) (6.13)

=
The score function is defined to be the dot product betweeghadimensional feature
representation and a corresponding weight vector:

1y
s(x,y) = _;W-f(x,uyjfl),L(yj)) (6.14)
=

Decoding in this model amounts to finding the combinationigfdms that max-
imises the scoring function in (6.14). McDonald (2006) uaedynamic program-
ming approach where the maximum score is found in a lefigbtrmanner. The al-
gorithm is an extension of Viterbi for the case in which ssofactor over dynamic
sub-strings (McDonald et al. 2005a; Sarawagi and Cohen 200dis allows back-
pointers to be used to reconstruct the highest scoring cessjon as well as tHebest
compressions.

Again this is similar to the trigram language model decodimgcess (see Sec-
tion 6.1.1), except that here a bigram model is used. Consdgughe ILP formulation
is slightly simpler than that of the trigram language modeit:

(1<i<n)

5 — 1 if x isin the compression
! 0 otherwise



6.1. Compression Models 93

We then introduce some more decision variables:

1 if x; starts the compression
a; = . V| [1. .. n]
0 otherwise

B — 1 if word x; ends the compression
"] 0 otherwise Vie[l...n]

y { 1 if sequences,X; is in the compressionVi € [1...n—1]
j =

0 otherwise Vieli+1...n|

The discriminative model can be now expressed as:

n

maxz = .Zai -5(x,0,i)

n-1 n

+ yi"SX,i,j
APILE
+_i[3i-s(x,i,n+1) (6.15)

Constraint 1  Exactly one word can begin a sentence.

n

_;ai =1 (6.16)

Constraint2  Ifaword is included in the sentence it must either start tragression

or follow another word.

j
Oi—ai— Y Viij=0 (6.17)
j Ji;IJ
Vitje[l

..N|

Constraint 3  If a word is included in the sentence it must be either folldwsy

another word or end the sentence.

5- S vi—Bi=0 (6.18)

Vitie[l...n]
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Constraint 4  Exactly one word can end a sentence.

LA 6.19)

Again, the sequential constraints in Equations (6.16}9)6are necessary to ensure
that the resulting combination of bigrams are valid.

The current formulation provides a single optimal comp@sgiven the model.
However, McDonald’s (2006) dynamic programming algoritismapable of returning
the k-best compressions; this is useful for their learning atpor described later. In
order to producek-best compressions, we must rerun the ILP with extra comssra
which forbid previous solutions. In other words, we firstrfarlate the ILP as above,
solve it, add its solution to thk-best list, and then create a set of constraints that
forbid the configuration od; decision variables which form the current solution. The
procedure is repeated unkicompressions are found.

6.2 Constraints

We are now ready to describe our constraints. The modelepred in the previous
sections contain only sequential constraints and are thusaent to their original

formulations. Our constraints are linguistically and satigally motivated in a simi-

lar fashion to the grammar checking component of Jing (20B8@)vever, they do not
rely on any additional knowledge sources (such as a granerioin or WordNet) be-

yond the parse and grammatical relations of the source semtaVhile grammatical
relations are a general concept, for our purposes we oldtam from RASP (Briscoe
and Carroll 2002), a domain-independent, robust parsingesy$or English. How-

ever, any other parser with a broadly similar output (e.g,(2001)) could also serve
our purposes. Our constraints revolve around modifica@wgument structure, and
discourse related factors.

In presenting our constraints it is useful to have real werdmples to understand
how each constraint affects compression output. Tabler®Jiges example sentences
and their corresponding compressions given by the trigranguage model, it also
shows the improvements made over the trigram model as we iffédedt styles of
constraints (described below).

We can see from Table 6.1 that the language model (rows mdxkeddes a rea-
sonable job of modelling local word dependencies, but inighle to capture syntactic
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la.He became a power player in Greek Politics in 1974, whefoineded the
socialist Pasok Party.

1b. He became a player in the Pasok.

1c. He became a player in the Pasok Party.

1d.He became a player in politics.

2a. She was in a Canadian hospital last night suffering fornaestion.
2b. She was a night.

2c. She was suffering from exhaustion.

2d. She was in a hospital suffering.

3a. We took these troubled youth who don’t have fathers, aoddght them into
the room to Dads who don’t have their children.

3b. We don't have, and don’t have children.

3c. We don't have them don’t have their children.

3d. We took these youth and brought them into the room to Dads.

Table 6.1: Compression examples (a: source sentence, b: compression with the tri-
gram model, ¢: compression with LM and modifier constraints, d: compression with LM,

Mod and argument structure constraints).

dependencies that could potentially allow for more medhingpmpressions. For ex-
ample, in sentence (1b) it is unable to capture the objett-tdependency between
Pasok Partyandfounded

Modifier Constraints Modifier constraints ensure that relationships betweerd hea
words and their modifiers remain grammatical in the compoass

o —0;>0 (6.20)
Vi, j 1 Xj € X's ncmods
5 —9;>0 (6.21)
Vi, j:Xj €X's detmods
Equation (6.20) guarantees that if we include a non-clausalfie (ncmod) in the

compression (such as an adjective or a noun) then the helad ofddifier must also be
included; this is repeated for determinetst(nod ) in (6.21). In Table 6.2 we illustrate

2Clausal modifiersomod) are adjuncts modifying entire clauses. In the example te the cake
because he was hungnthe becauselause is a modifier of the sentendes“ate the cake
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4a. He became a power player in Greek Politics in 1974, whefoireded the
socialist Pasok Party.

4b. *He became a power player in Greek Politics in 1974, wherfondedthe
Pasok

5a.  We took these troubled youth who don’t have fathers, aoddit them into
a room to Dads who don’t have their children.

5b. *We took these troubled youth whim havefathers, and brought them into
room to Dads whalo havetheir children.

5c. *We took these troubled youth who don't have fathers, lamedight them into
a room to Dads who dontave children.

6a. The chain stretched from Uganda to Grenada and Nicaramea the 1970s.

6b. *Stretched from Ugandato Grenada and Nicaragua, since the 1970s.

6¢c. *The chain from Ugandato Grenada and Nicaragua, since the 1970s.

6d. *The chairstretched Ugandato Grenada and Nicaragua, since the 1970s

6e. *The chairstretched from to Grenada and Nicaragua, since the 1970s.

6f. *The chain stretched frordganda to Grenada Nicaraguasince the 1970s.

Table 6.2: Examples of compressions disallowed by our set of constraints.

a

how these constraints disallow the deletion of certain wdstarred sentences denote

compressions that would not be possible given our conssiai-or example, if the

modifier wordPasokfrom sentence (4a) is in the compression, then its st/ will

also included (see (4b) as a counter example).

We also want to ensure that the meaning of the source senigmreserved in

the compression, particularly in the face of negation. HEgua(6.22) implements

this by forcingnot in the compression when the head is included (see sentehge (5

in Table 6.2). A similar constraint is added for possessivalifiers (e.qg.,his, our),

including genitives (e.gJohn’s gif), as shown in Equation (6.23). An example of the

possessive constraint is given in sentence (5c) in Table 6.2

o —90;j=0 (6.22)
Vi, j 1 Xj € X’s ncmods AXj = not
o —90;=0 (6.23)

Vi, ] 1 Xj € Xi's possessivenods
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Compression examples with the addition of the modifier cansis are shown in
Table 6.1 (see rows labelled c). Moving from the language eh@aws labelled b)
to the compressions with modifier constraints also dematesrthe interaction of the
constraints during inference. We see that sentence (1cdj3ma@hange little from the
language model but are certainly improvements. Unlike4postessing or reranking,
which could be used to ‘fix’ the output, the constraints plagla in inference and thus
the optimal compression according to the model and comssraiill always be found.
Thus we see the differences between sentence (2c) and €bjuah greater.

Although the compressions created with the use of modifiestraints are gram-
matical (see the inclusion d®arty due to the modifiePasoR, they are not entirely
meaning preserving.

Argument Structure Constraints We also define a few intuitive constraints that take
the overall sentence structure into account. The first camst(Equation (6.24)) en-
sures that if a verb is present in the compression then stsaaigguments, and if any of
the arguments are included in the compression then the vesbaiso be included. We
thus force the program to make the same decision on the \werfylbject, and object
(see sentence (6b) in Table 6.2).

5 —3;=0 (6.24)

Vi, j : Xj € subject/object of verl;

Our second constraint forces the compression to contaeaat bne verb provided the
source sentence contains one as well:

o >1 (6.25)
i:xjeverbs
The constraint entails that it is not possible to drop themvarb stretchedrom sen-
tence (6a) (see also sentence (6c¢) in Table 6.2).

Other sentential constraints include Equations (6.26) @&m27) which apply to
prepositional phrases and subordinate clauses. Thestaiatsforce the introducing
term (i.e., the preposition, or subordinator) to be incllide the compression if any
word from within the syntactic constituent is also includ&y subordinator we mean
wh-words (e.g.who, which, how, wherg the wordthat and subordinating conjunc-
tions (e.g.,after, although, becaugeThe reverse is also true, i.e., if the introducing
term is included, at least one other word from the syntadiitstituent should also be
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included.

& —9;>0 (6.26)
Vi,j:x; € PPISUB
AX; startsPP/SUB

o —90;>0 (6.27)
i:xielg/SUB

V] : x; startsPP/SUB

As an example consider sentence (6d) from Table 6.2. Hereaweot drop the prepo-
sition from if Ugandais in the compression. Conversely, we must incluiden if
Ugandais in the compression (see sentence (6e)).

We also wish to handle coordination. If two head words argainad in the source
sentence, then if they are included in the compression tbedowating conjunction
must also be included:

(1-%)+9%;>1 (6.28)
(1-6)+&>1 (6.29)
i+ (1-9))+(1-0¢)>1 (6.30)

Vi, j,K: Xj A X conjoined byx;

Consider sentence (6f) from Table 6.2. If bdtlgandaand Nicaraguaare present in
the compression, then we must include the conjunciiost

Table 6.1 illustrate the compression output when sentecdiastraints are added
to the model (see rows labelled with d). In sentence (1d) wels&politics is forced
into the compression due to the presencéoiSentences (2d) and (3d) change quite
considerably from those with only the modifier constrairssntence (2c) and (3c)).

Finally, Equation (6.31) disallows anything within bratken the source sentence
from being included in the compression. This is a somewhpesicial attempt at
excluding parenthetical and potentially unimportant matérom the compression.

5 =0 (6.31)

Vi x € bracketed words (inc parentheses)

Discourse Constraints Discourse constraints will be fully investigated in Chapter
however, for the time being we include a naive approximaitoour model.
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Our discourse constraint concerns personal pronouns.ifigadg, Equation (6.32)
forces personal pronouns to be included in the compres3iba.constraint is admit-
tedly more important for generating coherent documentsofgmsed to individual
sentences). It nevertheless has some impact on senteetedenpressions, in par-
ticular when verbal arguments are missed by the parser. Wiesetare pronominal,
constraint (6.32) will result in more grammatical outputc®@ some of the argument
structure of the source sentence will be preserved in thepoession.

5i=1 (6.32)

Vi:X € personal pronouns

We should note that some of the constraints described abouilwe captured by
models that learn synchronous deletion rules from a corpos.example, the noisy-
channel model of Knight and Marcu (2002) learns not to dra@phtead when the lat-
ter is modified by an adjective or a noun, since the transfaoma DT NN — DT
or AJD NN — ADJ are almost never seen in the data. Similarly, the coordinati
constraint (Equations (6.28)—(6.30)) would be enforcedgi3urner and Charniak’s
(2005) special rules — they enhance their parallel gramnitir ules modeling more
structurally complicated deletions than those attestdleir corpus. In designing our
constraints we aimed at capturing appropriate deletionsfiny possible models, in-
cluding those that do not rely on a training corpus or do netlan explicit notion of a
parallel grammar (e.g., McDonald 2006). The modificationstaaints would presum-
ably be redundant for the noisy-channel model, which cottetiovise benefit from
more specialised constraints, e.g., targeting sparse aulaoisy parse trees; however
we leave this to future work.

Another feature of the modelling framework presented herthat deletions (or
non-deletions) are treated as unconditional decisionsekample, we require not to
drop the noun in adjective-noun sequences if the adjectivei deleted as well. We
also require to always include a verb in the compressionafdburce sentence has
one. These hardwired decisions could in some cases preashicompressions from
being considered. For instance, it is not possible to cosgpiiee sentencetiis is not
appropriate behaviolito “ this is not appropriateor Bob loves Mary and John loves
Susari to “ Bob loves Mary and John SusanAdmittedly we lose some expressive
power, yet we ensure that the compressions will be broadiyngratical, even for
unsupervised or semi-supervised models. Furthermoreractipe we find that our
models consistently outperform non-constraint-baseetradtives, without extensive
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constraint engineering.

6.3 Experimental Setup

Our evaluation experiments were motivated by three questigl) Do compression
models with constraints deliver performance gains? We &xpetter compressions
for the model variants which incorporate constraints. (& there differences among
constraint-based models? Here, we would like to investigaiv much compression
quality is improved with the additional modelling power ged through constraints.
For example, it may be the case that a state-of-the-art migeédVicDonald’s (2006)
does not benefit much from the addition of constraints. Arad the effect of these
constraints is much bigger for a less sophisticated mo8gHow do the models port
across domains? In particular, we are interested in asgpgsiether the models and
proposed constraints are general and robust enough togeaphod compressions for
both written and spoken texts.

We next describe the data sets on which our models were traimétested, explain
how model parameters were estimated, discuss the solve tfreair ILPs and present
our evaluation setup. We discuss our results in Section 6.4.

Corpora  Our intent was to assess the performance of the models jgstided on
written and spoken text. The appeal of written text is un@eidable since most sum-
marisation work today focuses on this domain. Speech datanpprovides a natural
test-bed for compression applications (e.g., subtitleeggtion) but also poses addi-
tional challenges. Spoken utterances can be ungrammaticaimplete, and often
contain artefacts such as false starts, interjectiongtatiesis, and disfluencies. Rather
than focusing on spontaneous speech which is abundantse #refacts, we conduct
our study on the less ambitious domain of broadcast newsdrgus. This lies in-
between the extremes of written text and spontaneous speeitthas been scripted
beforehand and is usually read off on autocue.

We use the two manually compressed corpora introduced itidBe®. 1; a written
text corpus and a spoken text corpus. The written text cacpogprises of 82 newspa-
per articles (1,433 sentences) from the British Nationalp@ser(BNC) and the Amer-
ican News Text corpus. The corpus is split into training,edlegment and testing sets
randomly on article boundaries. The sets contain 908, 634&2dsentences respec-
tively. The spoken text corpus consists of 50 broadcast s¢evies (1,370 sentences)
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taken from the HUB-4 1996 English Broadcast News corpusigeal/by the LDC.
Again the corpus is divided into 882 training sentences,&&btbpment sentences and
410 testing sentences; each set contains full stories.

Parameter Estimation ~ McDonald’s (2006) model was trained on the full training
set on both corpora. The training is required to learn théufeaweightsw. Our
implementation uses the same features as McDonald (2086)section 2.2.3 for
details). The only difference is that our phrase structure @ependency features are
extracted from the output of Roark’s (2001) parser. McDdnades Charniak’s (2000)
parser which performs comparably.

A loss function is required to inform the learning algoritton the quality of a
compression hypothesis. McDonald’s (2006) loss is a measfithe number of words
falsely retained or dropped from the compression (i.e.,nimmber of false positives
and false negatives). During development we observed kigtldass function did
not compress aggressively enough on our corpora (typieatiynd 85% compression
rate). To alleviate this we introduced a new loss function:

L(x,y) = fp+ fn+ALP (6.33)

wherefy is the number of words falsely retained in the compressigis the number

of words falsely dropped from the compression alds the length penalty as defined
below in Equation (6.34). Hereis the length of the gold standard compression and
c is the length of the candidate compression. Rhgarameter controls how strongly
a candidate compression is penalised for exceeding theéhlesfighe gold standard
compression. Using a line search on the developmentdatss set to 3.

c—r ifc>r
LP = . (6.34)
0 otherwise

Recall that two of our models require a trigram language rh(s#e Sections 6.1.1
and 6.1.2). This was estimated from 25 million tokens of tlethl American cor-
pus using the CMU-Cambridge Language Modeling Toolkit (Clarkand Rosenfeld
1997) with a vocabulary size of 50,000 tokens and Good-gudiscounting. The
significance score was calculated using 25 million tokenmfthe American News
Text corpus. In one of our models this score is combined widnguage model (see
Equation (6.11)) and both terms are weighted. We optimiseavieights using a small
subset of the training data (three documents in each cake)optimisation followed



102 Chapter 6. ILP for Compression

Powell’'s method (Press et al. 1992) with a loss function t#asethe F-score of the
grammatical relations found in the original sentence as@ampressed version (see
Chapter 4 for details).

Solving the ILP As we mentioned in the previous chapter (Chapter 5) solviriRslL
is NP-hard. In cases where the coefficient matrix is unimaglui can be shown that
the optimal solution to the linear program is integral. Mltigh the coefficient matrix
in our problems is not unimodular, we obtained integral 8ohs for all sentences we
experimented with (approximately 3,000, see Section &:.8lébails). We conjecture
that this is due to the fact that all of our variables have-0,0r —1 coefficients in the

constraints and therefore our constraint matrix shares/mesperties of a unimodular
matrix. We generate and solve an ILP for every sentence we twisompress. Solve
times are less than a second per sentence (including inpptfooverheads) for all

models presented here.

Evaluation Method  Previous studies rely almost exclusively on human judgésnen
for assessing the assessing the well-formedness of autathatlerived compressions.
We followed the evaluation procedure outlined in Chapter é\gtuating the output of
our models in two ways. First, we present results using aonaatic evaluation mea-
sure comparing the relations found in the system compresgiainst those found in
the gold standard (Riezler et al. 2003). This allows us tosuesathe semantic aspects
of summarisation quality in terms of grammatical-funcabmformation and can be
quantified using F-score. Since our test corpora are faarigd (over 400 sentences in
each corpus) differences among systems can be highligsted significance testing.

Our implementation of the F-score measure uses the gramehatiations anno-
tations provided by RASP (Briscoe and Carroll 2002). Thisspars particularly ap-
propriate for the compression task since it provides pdisesoth full sentences and
sentence fragments and is generally robust enough to &nsdysi-grammatical com-
pressions. We calculated F-score over all the relationgged by RASP (e.g., subject,
direct/indirect object, modifier; 15 in total).

In line with previous work we also evaluate our models byigfig human judge-
ments. In the first experiment participants were preseniéidavsource sentence and
its target compression and asked to rate how well the corsiorepreserved the most
important information from the source sentence. In the sd@xperiment, they were
asked to rate the grammaticality of the compressed outpatboth cases they used
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a five point rating scale where a high number indicates bpgeiormance. We ran-
domly selected 21 sentences from the test portion of eaghusorThese sentences
were compressed automatically by the three models presénthis paper with and
without constraints. We also included gold standard cosgoas. Our materials thus
consisted of 294 (2% 2 x 7) source-target sentences. A Latin square design ensured
that subjects did not see two different compressions ofaheessentence. We collected
ratings from 42 unpaid volunteers, all self reported nainglish speakers. Both stud-
ies were conducted over the Internet. Examples of our exygerial items are given in
Table 6.3.

6.4 Results

Let us first discuss our results when compression output auated in terms of
F-score. Tables 6.4 and 6.5 illustrate the performance offrmgdels on the written and
spoken corpora, respectively. We also present the compresste for each system.
In all cases the models with the constraints (+Constr) yielitib F-scores than those
without. The difference is starker for the semi-supervisemtiel (Sig). On the written
corpus the constraint-based model outperforms the oflignualel by 17.2% and on
the spoken corpus by 18.3%. We further examined whetheopednce differences
among models are statistically significant, using the Watootest. On the written cor-
pus all constraint enhanced models significantly outperftire models without con-
straints. The same tendency is observed on the spoken cexpept for McDonald’s
(2006) model which performs comparably with and withoutstoaints.

We also wanted to establish which is the best constraint imd@ie both corpora
we find that the language model performs worst, whereas grefisiance model and
McDonald perform comparably (i.e., the F-score differenaees not statistically sig-
nificant). To get a feeling for the difficulty of the task, wd@aated how much our an-
notators agreed in their compression output. The inteptatar agreement (F-score)
on the written corpus was 65.8% and on the spoken corpus 73[#%&agreement is
higher on spoken texts since it consists of many short uttes (e.g.Okay, That's
it for now, Good nigh} that can be compressed only very little or not all. Note that
there is a marked difference between the automatic and hagorapressions. Our best
performing systems are inferior to human output by more @@ik-score percentage
points.

Differences between the automatic systems and the humpuataure also observed
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Source The aim is to give councils some control over the &ugrowth of sec-
ond homes.

Gold The aim is to give councils control over the growth of keam

LM The aim is to the future.

LM+Constr The aim is to give councils control.

Sig The aim is to give councils control over the future growtthomes.
Sig+Constr  The aim is to give councils control over the futgir@wth of homes.
McD The aim is to give councils.

McD+Constr The aim is to give councils some control over trengh of homes.

brownfields redevelopment in the form of a tax incentive josgd.

Gold The Clinton administration unveiled a new means to eraggibrown-
fields redevelopment in a tax incentive proposal.

LM The Clinton administration in the form of tax.

LM+Constr The Clinton administration unveiled a means to enage redevelop
ment in the form.

Sig The Clinton administration unveiled a encourage brovadieedevel-
opment form tax proposal.

redevelopment in the form of tax proposal.
McD The Clinton unveiled a means to encourage brownfieldsveddpment
in a tax incentive proposal.

redevelopment in the form of a incentive proposal.

Source The Clinton administration recently unveiled a nevamsdo encourage

Sig+Constr  The Clinton administration unveiled a means t@erage brownfields

McD+Constr The Clinton administration unveiled a means tearege brownfields

D

D

Table 6.3: Example compressions produced by our systems (Source: source sentence,
Gold: gold-standard compression, LM: language model compression, LM+Constr:
language model compression with constraints, Sig: significance model, Sig+Constr:
significance model with constraints, McD: McDonald’s (2006) compression model,

McD+Constr: McDonald’s (2006) compression model with constraints).
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Models CompR F-score
LM 46.2 184
Sig 60.6 233
McD 60.1 360

LM+Constr 41.2 28
Sig+Constr 72.0 46+t
McD+Constr  63.7 4@t
Gold 70.3 —

Table 6.4: Results on the written text corpus; compression rate (CompR) and grammat-
ical relation F-score (F-score); *: constraint-based model is significantly different from

model without constraints; : significantly different from LM+Constr.

Models CompR F-score
LM 52.0 254
Sig 60.9 304
McD 68.6 476

LM+Constr 495 343*
Sig+Constr 78.4 4g+t
McD+Constr  68.5 5t

Gold 76.1 —

Table 6.5: Results on the spoken text corpus; compression rate (CompR) and gram-
matical relation F-score (F-score); *: constraint-based model is significantly different

from model without constraints.; T: significantly different from LM+Constr.
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Models Grammar Importance
LM 2.25'% 1.821%
Sig 226'% 2.99™%
McD 3.05' 2.84"
LM+Constr 3471 23713
Sig+Constr 376° 3.53
McD+Constr 350" 317"
Gold 425 398

Table 6.6: Results on the written text corpus; average grammaticality score (Gram-
mar) and average importance score (Importance) for human judgements; *: model is
significantly different from model without constraints; T. significantly different from gold

standard; %; significantly different from McD+Constr.

with respect to the compression rate. As can be seen thedgeguodel compresses
most aggressively, whereas the significance model and Maldaend to be more
conservative and closer to the gold standard. Interestitige constraints do not nec-
essarily increase the compression rate. The latter inescfas the significance model
but decreases for the language model and remains relativatant for McDonald. It
is straightforward to impose the same compression ratelfaoastraint-based mod-
els (e.g., by forcing the model to retairtokensy . ; y; = b). However, we refrained
from doing this since we wanted our models to regulate thepression rate for each
sentence individually according its specific informati@mtent and structure.

We next consider the results of our human study which asses®ie detail the
quality of the generated compressions on two dimensiomsghagrammaticality and
information content. F-score conflates these two dimessérd therefore in theory
could unduly reward a system that produces perfectly graticaiautput without any
information loss. Tables 6.6 and 6.7 show the mean ratifigseach system (and the
gold standard) on the written and spoken corpora, respgtiWe first performed an
Analysis of Variance (AlovA) to examine the effect of different system compressions.
The ANOVA revealed a reliable effect on both grammaticality and ingooere for each
corpus (the effect was significant by both subjects and itgms0.01)).

We next examine the impact of the constraints (+Constr in dfsées). In most
cases we observe an increase in ratings for both grammgtiaall importance when

3All statistical tests reported subsequently were doneguia mean ratings.
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Models Grammar Importance
LM 2.20™% 1.56'
Sig 2291% 2.647
McD 3.33 3.32"

LM+Constr 318t 2.49+T$
Sig+Constr B0t 3.697
McD+Constr 360" 3.31"

Gold 445 425

Table 6.7: Results on the spoken text corpus; average grammaticality score (Gram-
mar) and average importance score (Importance) for human judgements; *: model is
significantly different from model without constraints; T. significantly different from gold

standard; %; significantly different from McD+Constr.

a model is supplemented with constraints. Post-hoc Tukstg teveal that the gram-
maticality and importance ratings of the language modelsagdificance model sig-
nificantly improve with the constraintsi(< 0.01). By contrast, McDonald’s system
sees a numerical improvement with the addition of condsaiout this difference is
not statistically significant. These tendencies are oleston the spoken and written
corpora.

Upon closer inspection, we can see that constraints infei@onsiderably the
grammaticality of the unsupervised and semi-supervisesiesys. Tukey tests re-
veal that LM+Constr and Sig+Constr are as grammatical as McDs{oln terms
of importance, Sig+Constr and McD+Constr are significantligdseghan LM+Constr
(o < 0.01). Thisis not surprising given that LM+Constr is a very sienpodel without
a mechanism for highlighting important words in a sentehatrestingly, Sig+Constr
performs as well as McD+Constr in retaining the most impdrtaords, despite the
fact that it requires minimal supervision. Although coastt-based models overall
perform better than models without constraints, they gahereceive lower ratings
(for grammaticality and importance) in comparison to thédggtandard. And the dif-
ferences are significant in most cases.

In summary, we observe that constraints boost performaftes is more pro-
nounced for compression models that are either unsupéreisese small amounts of
parallel data. For example, a simple model like Sig yielddguenance comparable
to McDonald (2006) when constraints are taken into accotihis is an encouraging
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result suggesting that ILP can be used to create good cosipnesiodels with rela-
tively little effort (i.e., without extensive feature emgiering or elaborate knowledge
sources). Performance gains are also obtained for convpgetitodels like McDon-
ald’s (2006) that are fully supervised. But these gains araller, presumably because
the initial local model does a good job at producing gramoaiutput. Finally, our
improvements are consistent across corpora and evalyasdi@aaigms.

6.5 Summary of Chapter

In this chapter we have presented a novel method for autorsatitence compression.
A key aspect of our approach is the use of integer linear rogning for inferring
globally optimal compressions in the presence of lingo#ly motivated constraints.
We have shown how previous formulations of sentence corsjanresan be recast as
ILPs and extended these models with constraints ensuratgtie compressed out-
put is structurally and semantically well-formed. Contrémyprevious work that has
employed ILP solely for decoding, our models integratenasay with inference in a
unified framework.

Our experiments have demonstrated the advantages of tmeaapp Constraint-
based models consistently bring performance gains ovesaime models without con-
straints. These improvements are more impressive for rsdtiat require little or no
supervision. A case in point here is the significance modsudised above. The un-
constrained incarnation of this model performs poorly andsiderably worse than
McDonald’s (2006) state-of-the-art model. The additiorcofstraints improves the
output of this model so that its performance is indistingatse from McDonald. Note
that the significance model requires a small amount of tngimiata (50 parallel sen-
tences), whereas McDonald is trained on hundreds of sezgeritalso presupposes
little feature engineering, whereas McDonald utilisesugeands of features. Some ef-
fort is associated with framing the global constraints; beer these are created once
and are applied across models and corpora. We have alsovetdsgmall performance
gains for McDonald’s system when the latter is supplemewididconstraints. Larger
improvements are possible with more sophisticated cansstdowever our intent was
to devise a set of general constraints that are not tunecetmistakes of any specific
system in particular.



Chapter 7
Document Compression

Throughout this thesis we have focused on a simple instantiaf the sentence com-
pression task. First we assume that compression occursutimy rewriting opera-
tions besides word removal. Secondly, compression is padd on isolated sentences
without taking their surrounding context into account.

In this chapter we address the latter simplification andgarea compression model
that makes use of discourse-level information. Perforndampression on isolated
sentences is at odds with most of its applications which aicreéate a shorter docu-
ment rather than a single sentence. For example, compgeasiocument to display
text on PDA requires the resulting document to not only bergnatical but also co-
herent in order to be easily read and understood. Howevisrcimnot be guaranteed
without knowledge of how the discourse progresses fromesemat to sentence. To
give a simple example, a contextually aware compressiotesysould drop a word
or phrase from the current sentence simply because it is rationed anywhere else
in the document. Or it could decide to retain the word or pardge to previous
references. Neglecting to incorporate discourse-levierimation into our compres-
sion models may lead to documents fraught with coherendatioas (e.g., dangling
anaphora) and thus difficult to understand. The discourk®nration will provide
a much richer view of the document than can be gained from uinlace form and
sentence parse trees. It can be viewed as another form oisingevidence and can
complement the representations used in earlier modelb, asiparse trees and gram-
matical relations, to provide a better interpretation & ttocument.

Knowledge of the discourse will not only help maintain carere but can also
notify our models of what information is important thus picing improvements in
sentence-level compressions. The task is admittedly camgtd the topic of much
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research in document summarisation. A number of factore leen identified as
signalling what information is important in a document. $@enclude the discourse
topic, whether the sentence introduces new entities ortetbat have not been men-
tioned before, and the reader’s background knowledge. dfwiel that contextual cues
are strong indicators of importance stems from professismamarisation. Abstrac-
tors often rely on contextual cues and a discourse-levaiessmtation which they
piece together to form thinemeof the document, while creating summaries (Endres-
Niggemeyer 1998). The contextual cues are shallow senfemeefeatures whereas
the theme is a structured mental representation of whatdberdent is about. It links
textual elements together in a similar way to a rhetorieskl analysis of the doc-
ument’s content. For example, two passages may be linkedeifi® a restatement,
exemplifies, or is a cause/effect of the other passage.

For the remainder of this chapter we will use the term docungempression to
refer to a document whose sentences have been compresseel fdvioally, given a
document,D, consisting of sentenceb, = S,..., Sy, our goal is to compress each
sentences = ws, ..., Wy by deleting words from the original. The compressed docu-
ment should retain the most important information, remaangmatical and coherent.
We could simply tackle the task by compressing each sentawmeentially using our
sentence compression systems from Chapter 6. Howeversictiapter we will show
that a discourse aware model is better suited to this task.

7.1 Related Work

In this section we review some of the previous work on inceaing discourse-level
information into summarisation and compression models.

Jing (2000) uses information from the local context as ewgefor and against
the removal of phrases during compression. Her model asstiméethe local context
provides information about the main topic being discussetrases in the sentence
which are most related to the main topic should not be droppEudke topic is not
explicitly identified, instead the importance of each phriasietermined by the number
of lexical links within the local context. Words which are m@onnected have a higher
chance of being the focus of the local context and thus @kat¢éhe main topic.

Her model links two words if they are repetitions, morphaotadly related or as-
sociated in WordNet (Miller 1995) through a lexical relati¢e.g., hyponymy, syn-
onymy). This leads to nine possible relational links. Difiet types of links are con-
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sidered more important, for example, repetition and initexst are more important than
hypernyms. A context weight is calculated for each word dasethe number of links
to the local context and the importance of each relation.tiAteases are scored by the
sum of their children’s context scores. The decision to digghrase from a sentence
are based partly on the local context and other factors ssittegphrase’s grammatical
role and previous evidence from a parallel corpus (see @e2ti3.1 for more details).

Although Jing (2000) incorporates discourse informatioto ia compression ap-
proximately through the local context, the number of ‘frearameters in her method
poses some problems. Firstly, determining the size of thal loontext is non-trivial
and in the worst-case will be set arbitrarily. In her expents the size of the local
context is not mentioned. Also weights must be given to egpk bf lexical rela-
tion to signify how good each relation is at determining tbeus of the local context.
Ideally, we want a method for supplementing our compressiodels with discourse
information which requires as few ‘free’ parameters as fiss

Daun® Il and Marcu (2002) present a summarisation system tlestthe syntactic
structure of each sentence and the overall discourse steuof the input document.
The system uses a statistical hierarchical model of texdlyction in order to drop
syntactic and discourse units from a document deemed to ingortant, this in turn
generates a coherent and grammatical summary. The tasknedrin a similar manner
to the sentence compression task. Given a doculdentvy,W», ..., W, the goal is to
produce a summarg, by dropping any subset of words fro

Their model is an extension of the noisy-channel model foitesgce compres-
sion (Knight and Marcu 2002). Recall that the noisy-chaimaal two components: a
language model and a channel model. In the sentence congorasstantiation both
models act on probabilistic context-free grammar (PCFGlesgntations. Dauenlll
and Marcu (2002) supplement this representation with sodise representation that
connects sentences within the document in the form of a treetare. For this pur-
pose they select the Rhetorical Structure Theory (RST MawnTdaompson 1988) of
discourse structure to model the relationships betweetesees.

In the RST framework, a document is represented by a tree evleases corre-
spond to text fragments. The fragments are the minimal whitise discourse and are
termedelementary discourse uni(EDUs). The internal nodes of the tree correspond
to contiguous text spans and the nodes are labelled witletarical relation A cru-
cial point made by RST is that most rhetorical relations leetwtwo segments in a text
are asymmetric. Theucleusn the relation is the node which contains more essential
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Figure 7.1: A DS-tree for text (1). The DS-tree depicts the full discourse and a partial

syntactic parse (to save space).

information, whilesatellite nodes indicate supporting or background units of infor-
mation. There are approximately 25 rhetorical relation&®RBT, examples of which
include: background, contrast, purpose, motivation,uciistance and solutionhood.

Daune Il and Marcu’s (2002) system works in a pipeline fashiomstrdiscourse
structures are generated using a decision-based discparser (Marcu 2000). This
builds a RST discourse structure containing EDUs and rleatiarelations. The EDUs
are then syntactically parsed using Collins’s (1997) parblee EDUS’ syntactic trees
are then merged with the discourse structure to form a drseostructure tree (DS-
tree) which contains both discourse and syntactic infolnatlhe DS-tree acts as an
input to the compression model. An example DS-tree for tedt lfelow, is given in
Figure 7.1. The full parse of each EDU is omitted to save space

(1) The mayor is now looking for re-election. John Doe hasady secured the
vote of most democrats in his constituency, which is alregldyost enough to
win. But without the support of the governer, he is still ok ground.

Their compression performs compression by dropping egetactic or discourse
constituents from the DS-tree. The problem is framed asvdl given a document
D, they wish to find the summary te8 that maximises?(SD). They recast this
formulation into the noisy-channel model thus maximisit{@®|S) - P(S). Itis intuitive
to think of the compression process as: given a sumi@wiyat discourse and syntactic
units can be added to yield the full documenD.

The language model is tasked with assigning H#§B) scores to summaries that
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Figure 7.2: A sequence of discourse expansions for text (1) with probability factors.

contain grammatical sentences and are coherent. Thignsagst using a bigram lan-
guage model combined with non-lexicalised context-fregrgnar (PCFG) scores and
context-free discourse probabilities, giviRgS) = Poigram(S) - Prcra(S) - Popcra(9).

The channel modeR(D|S) adds syntactic constituents or discourse units to the
summary. Syntactic constituents are expanded in the sam@enas Knight and
Marcu (2002) (see Section 2.1.2 for details). For exampbesicler the text (2) as
a summary of text (1). Through a sequence of discourse ekpang is possible to
expand the summary (2) into the source text (1). The complistsourse expansion
process is demonstrated in Figure 7.2.

(2) John Doe has already secured the vote of most democHais consistency.

The parameters for the language mod®($), require three corpora: a raw text
corpus forPyigram, @ PCFG parsed corpus fBscrc and annotated discourse passages
with their PCFG parse trees f@bpcre. Unfortunately annotated discourse passages
are in short supply thus it is difficult to accurately estimBbpcrs. The parameters
for the discourse portion of the language motekcrc, were estimated from an RST
corpus of 385 Wall Street Journal articles from the Pennf@ae&. Documents ranged
from 31 to 2124 words with 458 words being the average.

The same corpus is also used to estimate the discourse pardorehe channel
model,P(D|S). 150 of the 385 documents were paired with extractive suri@sand
were manually annotated to mark the most important EDUsndJgiese EDUs it is
possible to examine the RST discourse tree and mark all ddaoés of the EDUs as
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important. For example in Figure 7.1 if the annotators méwk two starred EDUs
then all the parents are also considered important. Thisarewetation is then used
to calculate the probability of dropping various nucleus aatellite nodes from cer-
tain relations, i.e., it is possible to estimate the prolitgbP(Nuc = Span— Nuc =
Span Sat= EvalNuc= Span— Nuc = Spar).

Daune Il and Marcu (2002) test their system on two small data. sEtte first is
drawn from the Wall Street Journal (WSJ) portion of the Pergebank. It consists
of 16 documents of between 41 and 87 words. The second, th®EEEt, originates
from a collection of student compositions and contains fiveutinents of between 64
and 91 words. They were unable to test the system on longenuents since the de-
coder (used to find the optimal summary) ran out of memoryirgystem is compared
against a baseline which randomly drops 50% of the wordsseéhéence compression
system of Knight and Marcu (2002) in which each sentence incumhent is com-
pressed sequentially, and human authored summaries. Biarhavaluators rated the
systems according to three metrics: grammaticality, cefeg and summary quality
on a five point scale. Their results show that their systermiges more grammatical
(3.45 vs 3.30) and coherent (3.16 vs 2.98) summaries in cosgpeato the sentence
compression system but there is no statistically signifiddference between the qual-
ity of the summaries (2.88 vs 2.70) on the WSJ data set; a sipaldern is observed
for the MITRE data. Another interesting note is that the egsperforms better on the
MITRE data set due to its short sentences which can be parsedauocurately for dis-
course information. However, all systems perform signifttaworse than the human
authored summaries which score 4.65 for grammaticalith8 for coherence and 4.53
for summary quality on the WSJ. Similar numbers are obtainethe MITRE data.

Discourse-information has also been incorporated intersshmmarisation meth-
ods including sentence extraction (Barzilay and Elhad&3T}, see section 7.2.2 for
details) and content selection (Teufel and Moens 2002).

7.2 Discourse Representation

Obtaining an appropriate representation of discourseaditst step toward creating a
compression model that exploits contextual informatiorev®us work has focused
on theories of global discourse such as Rhetorical Stractitneory (RST Mann and
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Thompson 1988), however RST parsers (Marcu 2000) tend tofsiableé’ for most
documents except those that are short and contain shomjesisentences. This is
demonstrated by the results given by Daut and Marcu (2002) where they found
that their discourse parser produced noisy parses for dentgwwontaining longer sen-
tences. We strive for a more robust method for obtainingadisge representations and
focus on local rather than global coherence. Models of loohkrence are concerned
with the way adjacent sentences bind together to form adatigeourse. Although
these models do not explicitly capture the long distancatimiships between sen-
tences, local coherence is still an important prerequfsitenaintaining global coher-
ence. Our goal is to annotate our document automatically digcourse-level infor-
mation which will subsequently be used to inform our comgi@s procedure.

In this section we will examine two complementary theorié$ooal coherence,
namely Centering Theory (Grosz et al. 1995) and lexical chaiBoth theories as-
sume that coherence is achieved through the way discoutise®are introduced and
discussed. We present a more detailed introduction in tlh@rfimg sections.

7.2.1 Centering Theory

Centering Theory (Grosz et al. 1995) is an entity-orientalbewdry of local coherence
and salience. Its aim is to make cross-linguistically validims about which dis-
courses are easier to process therefore it is best viewediaguastic theory rather

than a computational one. The theory is presented in anaab$trm and provides no
specific algorithms computing the components required éotering.

The theory begins by assuming that a discourse is brokenutierances’. These
can be phrases, clauses, sentences or even paragraphsrinQecttaracterises dis-
courses as coherent because of the way discourse entgiggraduced and discussed
between utterances. The theory further distinguishesdmatvgalient entities and the
rest. Specifically, although each utterance may contaiaraéentities, it is assumed
that asingle entityis salient or “centered”, thereby representing the curdestourse
focus. One of the main claims underlying centering is thetalirse segments in which
successive utterances contain common centers are moneobtiean segments where
the center repeatedly changes.

Each utteranc¥;j in a discourse has a list ébrward-looking centersC (U;) and
aunique backward-looking centeZy,(Uj). Ct(Uj) represents a ranking of the entities

IMarcu’s (2000) parser achieves the following F-scores dentification: 38.2 for EDUs, 50.0 for
hierarchical spans, 39.9 for nuclearity and 23.4 for relatagging.
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invoked byU; according to their salience. Thus, some entities in theodis®e are
deemed more important than others. Theof the current utterandd;, is the highest-
ranked element ii€s(Uj_1) that is also inJ;. TheC, thus linksU; to the previous
discourse, but it does docally sinceCy(Uj) is chosen fronlJj_;. These concepts
are demonstrated in passages (3-a)—(3-c) taken from Watkal (1998). Here we
can see that utterances (3-a) and (3-b) have the forwakdAgaentersieff Dick and
carwhich are ranked according to their salience. To deternfieebickward-looking
center of (3-b) we find the highest ranked entity in the fovimoking centers for (3-a)
which also occurs in (3-b). The same procedure is appliedtterance (3-c).

(3) a. Jeff Helped Dick wash the car.

CF(Jeff, Dick, car)

b. He washed the windows as Dick waxed the car.
CF(Jeff, Dick, car)
CB=Jeff

c. He soaped a pane.
CF(Jeff, pane)
CB=Jeff

Centering Algorithm  As noted, Centering is primarily considered a linguisticditye
rather than a computation one. It is therefore not expjicthted how the concepts of
“utterance”, “entities” and “ranking” are instantiated.gfeat deal of research has been
devoted into fleshing these out and many different instatia have been developed
in the literature (see Poesio et al. 2004 for details). Fompouposes, the instantiation
will have a bearing on the reliability of the algorithm to detcenters. If the parameters
are too specific then it may not be possible to accuratelyroh@te the center for a
given utterance. Since our aim is to identify centers in aisse automatically, our
parameter choice is driven by two considerations: robissta@d ease of computation.
We therefore follow previous work (e.g., Miltsakaki and Ketk2000) in assuming
that the unit of an utterance is the sentence (i.e., a mairselavith accompanying
subordinate and adjunct clauses). This is a simplistic witan utterance, however it
is in line with our compression task which also operates seetences. We determine
which entities are invoked by a sentence using two methadst, wve perform named
entity identification and coreference resolution on eactudwent using LingPige a

2LingPipe can be downloaded frofttp://www.alias-i.com/lingpipe/
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publicly available system. Named entities are not the oy of entity to occur in our
data, thus to ensure a high entity recall we add named editid all remaining nouAs
to theCs list. Entity matching between sentences is required tordete theCy, of

a sentence. This is done using the named entity’s uniqudifiéer{as provided by
LingPipe) or by the entity’s surface form in the case of nonosclassified as named
entities.

Entities are ranked according to their grammatical rolebjexcts are ranked more
highly than objects, which are in turn ranked higher thareogrammatical roles (Grosz
et al. 1995); ties are broken using left-to-right orderirighee grammatical roles in the
sentence (Tetreault 2001). We identify grammatical rolés RASP (Briscoe and
Carroll 2002). Formally, our centering algorithm is as fello(whereU; corresponds
to sentencs):

1. Extract entities fron;.

2. CreateCy(Uj) by ranking the entities iJ; according to their grammatical role
(subjects> objects> others, ties broken using left-to-right word ordery).

3. Find the highest ranked entity@3 (Uj_1) which occurs irCs (Uj), set the entity
to beCyp(Uj).

The above procedure involves several automatic steps @haméy recognition,
coreference resolution, identification of grammaticaés)land will unavoidably pro-
duce some noisy annotations. So, there is no guarantedeaghtC, will be identi-
fied or that all sentences will be marked witiCg The latter situation also occurs in
passages that contain abrupt changes in topic. In such, cas®s of the entities re-
alised inU; will occur inC¢ (Uj_1). Rather than accept that discourse information may
be absent in a sentence, we turn to lexical chains as anatiterrmeans of capturing
topical content within a document.

7.2.2 Lexical Chains

Lexical cohesion refers to the degree of semantic relatsdobserved among lexical
items in a document. The term was coined by Halliday and H@ls@i#6) who observed
that coherent documents tend to have more related termsrasgathan incoherent
ones. A number of linguistic devices can be used to signatsion; these range from

3As determined by the word’s part-of-speech tag.
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repetition, to synonymy, hyponymy and meronymy. Lexicaliols are a representation
of lexical cohesion as sequences of semantically relateds\®orris and Hirst 1991).
There is a close relationship between discourse struchdeahesion. Related words
tend to co-occur within the same discourse. Thus, cohesiansurface indicator of
discourse structure and can be identified through lexicainsh

Lexical chains provide a useful means for describing thectipw in discourse.
For example, a document containing the chgfimuse home loft, houség will prob-
ably describe a situation involving a house. It is commondocuments to contain
many different lexical chains as multiple topics (or thejmascur throughout a docu-
ment. However, some of these topics will only be asides aneesented by short
lexical chains whereas the main topics will tend to represby dense longer chains.
Words participating in the latter chains are important for compression task — they
reveal what the document is about — and in all likelihood $thowt be deleted.

Barzilay and Elhadad (1997) describe a technique for gidexical chains for
extractive text summarisation. In their approach chairseohantically related expres-
sions are used to select sentences for inclusion in a sumni&sir algorithm uses
WordNet (Miller 1995) to build chains of nouns (and noun campds). Words in
WordNet are represented by senses which break a word infmgsible meanings.
Senses are represented relationally by synonym sets wiedheasets of all the words
sharing a common sense. Words belonging to the same catagotinked through
semantic relations. Generally, lexical chains are buihgdVordNet through a three
stage procedure (Barzilay and Elhadad 1997):

1. Select a set of candidate words (typically all words tipgtesar in WordNet).

2. For each candidate word, find the appropriate chain rglgin a relatedness
criterion among members of the chains.

3. Ifachainis found, insert the word into the chain.

The crux of the problem lies in the disambiguation strategymhapping words to
their senses. If a weak strategy is chosen (for example ddyedisambiguate) and
the senses are chosen wrongly, then chains obtained willeflett the relationship
between the word senses used in the document. It is on this ikat lexical chaining
algorithms diffef .

4We refer the interested reader to Barzilay and Elhadad (1fe®@etails of their word sense disam-
biguation algorithm.
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The lexical chains obtained by Barzilay and Elhadad (199& tlzen used to per-
form text summarisation through sentence extraction. Hans are ranked heuristi-
cally by a score based on their length and homogeneity. A samynis produced by
extracting sentences correspondingstmng chainsi.e., chains whose score is two
standard deviations above the average score.

Like Barzilay and Elhadad (1997), we wish to determine whetical chains in-
dicate the most prevalent discourse topics. Our assumgitimat terms belonging
to these chains are indicative of the document’s main foacusshould therefore be
retained in the compressed output. Barzilay and Elhadadsrsgy function aims to
identify sentences (for inclusion in a summary) that havegh boncentration of chain
members. In contrast, we are interested in chains that spaerad sentences. We
thus score chains according to the number of sentencesténegis occur in. For ex-
ample, the hypothetical chaifhousg, home, loft;, housg} (whereword, denotes
word occurring in sentencg would be given a score of two as the terms only occur in
two sentences. We assume that a chain signals a prevaleatudis topic if it occurs
throughout more sentences than the average chain. Thegagorithm is outlined
more formally below:

1. Compute the lexical chains for the document.
2. ScoréChain) = Sentencd€hain).
3. Discard chains for whicBcordChain) < AveragéScore.

4. Mark terms from the remaining chains as being the focub@ftibcument.

We use the method of Galley and McKeown (2003) to computedéxihains for
each document.It improves on Barzilay and Elhadad’s (1997) original alton by
providing better word sense disambiguation and linearimut

7.2.3 Annotation Method

Before compression takes place, all documents are pratessay the centering and
lexical chain algorithms described above. In each senteee@nnotate the cen-
ter Cp(Uj) if one exists. Words (or phrases) that are present in theeotisentence
and function as the center in the next sente@Gg@J;j, 1) are also flagged. Finally,

5The software is available frottp://www1.cs.columbia.edu/"galley/
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Bad (weathe} dashed hopes of attempts to halt(frv; ) during

what was seen as a lull in t momentum. Experts say that

even if the eruption stoppétbdays |, the pressure gflava piled up
behind for si¥ miless | would bring cascading down on to the
town] anyway. Some estimate the volcano is pouring out onleomi

tons of\ debris\ a[dayzj, at alrate | of 13 ft3| per second], from a
fissure that opened in mid-December.

The Italian Arm detonated 400Ib of dynamite 3,500 feet

up Mount Etna’s slopes.

Figure 7.3: Excerpt of document from our test set with discourse annotations. Centers
are in double boxes; terms occurring in lexical chains are in oval boxes. Words with the

same subscript are members of the same chain (e.g., today, day, second, yesterday)

words are marked if they are part of a prevalent chain. Exampf our discourse an-
notation are given in Figures 7.3, 7.4 and 7.5. As shown irfithees, the centering
annotations tend to mark the most salient entities in eactesee. For example, in
Figure 7.3 the centers alava and debris from this we can see that the document is
related to volcanoes. Similarly Figure 7.4 is concernedhwits Allan (see the centers
Mrs Allan, her, shg. The centers of Figure 7.5 do not convey the salient topitseo
document in the way the previous two examples did. In thisrgta we can see that
the lexical chains algorithm provides a better insight itite text. It shows that the
centering algorithm was unable to fully annotate sentermay finding Peter Ander-
sonandallotment however, using the lexical chains annotations we can segeit is
about a policeman, a woman and her boyfriend.

7.3 Discourse Model

The foundation of our discourse model is the significance ehpdesented in Sec-
tion 6.1.2 along with the constraints from Section 6.2. Weaehis model for several
reasons. First, it only requires little parallel data (58teaces) and thus can be ported
across domains and text genres, whilst delivering stathefrt results (see the re-
sults in Section 6.4 for details). Second, discourse-lenfermation can be easily in-
corporated by augmenting the constraint set. This is not#éise for other approaches
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on the second pilgrimage to fi son.| Shel is suffer-

ing from exhaustion but otherwise fine,” he said.“l spokgher] last
night| and| she|is under strict orders to have complete rest.”

|Mrs Allan| was taken to nearby Kelowna General Hospital after
the (bodys | was foundHer| husband, Stuart, 52, said yesterday
had been in daily contact wiq since| she| flew to Canada last

he

Figure 7.4. Excerpt of document from our test set with discourse annotations. Centers

are in double boxes; terms occurring in lexical chains are in oval boxes. Words with the

same subscript are members of the same chain (e.g., night, month, days, years)

A policemaﬁ] was yesterday jailed for seven years for raping an

in uniform.Sentencing constabl@®eter Andersoly 41, Mr Justice
Jowitt told him he had done “great damage to the tru”.

| Andersor], married with two children, attacked tfi@oman) in a
deserte, after agreeing to give her an@ a

lift home from a discotheque.He first dropped off and then
drove to the allotment].

year-old womarn | in his marked patrol car while he was on duty and

18-

Figure 7.5: Excerpt of document from our test set with discourse annotations. Centers

are in double boxes; terms occurring in lexical chains are in oval boxes. Words with the

same subscript are members of the same chain (e.g., police, policeman, officer

)
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(e.g., those based on the noisy channel model) where cosipnes modelled by
grammar rules indicating which constituents to delete igratactic context. Finally,
the ILP framework provides exact inference even in the fd@®nostraints thus avoid-
ing approximations and heuristics during decoding.

The base model includes the objective function from Equattl1), the sequen-
tial constraints of Equations (6.4)—(6.8) to ensure vatichbinations of trigrams are se-
lected, and the syntactically and semantically motivatadstraints from Equations (6.20)—
(6.31). The latter constraints instill global linguistid@ermation into the model and act
on the modifier and argument structure of the sentence.

Recall that we have a 0—1 decision variable representing/dra is to be included
in the compression.

€l...n|

- J 1 ifxisinthe compressionVi
' 0 otherwise

This will be useful for building our new discourse consttain

7.3.1 Discourse Constraints

We now turn our attention to incorporating discourse infatimn into our compres-
sion model. Recall that we automatically annotate eachlesestwith its own center
Cp(Uj), the centeCy(U;41) of the sentence following it, and words that are members
of high scoring lexical chains corresponding to the docuradacus. Provided with
this additional knowledge our compression model builds h&w types of constraints
to ensure that compressed documents preserve the flow acdfdpe source docu-
ments.

Ouir first goal to is preserve the focus of each sentence. HeheerC, is identified
in the source sentence it must be retained in the compres#igmesent, the entity
realised as th€y, in the following sentence should also be retained to enfgrertities
in focus between sentences are preserved. Such a congitasily captured with the
following ILP constraint:

5=1 (7.1)
Vi 1% € {Cp(Uj),Co(Uj41)}

Consider for example the discourse in Figure 7.3. The canstsrgenerated from
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Equation (7.1) will require the compression to retimain the first two sentences and
debrisin the second and third sentences.

The centering algorithm relies on NLP technology that isktif1% accurate (named
entity detection and coreference resolution) therefoeealgorithm can only approx-
imate the center for each sentence. In some cases the afgasitunable to identify
the center. The lexical chains algorithm provides a complaiary annotation of the
topic or theme of the document using information which is mestricted to adjacent
sentences. We thus require that words in topical lexicaihshae retained in the com-
pression.

o =1 (7.2)

Vi : X € document topical lexical chain

This constraint only applies to nouns that are members atdéghains represent-
ing the focus of the document. See for instance the wiiahg andratein Figure 7.3
which are members of the same chain (marked with subscrigit éccording to con-
straint (7.2) both words must be included in the compressedimient. In the case
of Figure 7.5 the chain relating to the poligeo(ice policemar) and people oman
boyfriend man) would be retained in the compression.

Our final discourse constraint follows from our basic appmation of discourse
in Section 6.2. It concerns personal pronouns. Specificaltywish to include per-
sonal pronouns (whose antecedent may not always be iddtifféis is realised in
constraint (7.3) repeated from Section 6.2.

5=1 (7.3)

Vi:X € personal pronouns

The constraints just described ensure that the compresseaignt will retain the
discourse flow of the source document and will preserve témdisative of important
topics. The discourse constraints will not only ensure toampressed documents are
coherent but they will additionally benefit sentence-les@hpression. The discourse
information is a deeper interpretation of the document amdiges the compression
model with strong evidence for including discourse reléwvaords in the compression.
Words not marked as discourse relevant can be considereeifmval. It is now possi-
ble to interpret what information is important through lingtic evidence as provided
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Bad weather dashed hopes to halt the flow during what was seen a
lull in lava’s momentum. Experts say that even if eruptioopgted,
the pressure of lava piled would bring debris cascading. é&esti-
mate volcano is pouring million tons of debris from fissurenged in

mid-December. The Army yesterday detonated 400Ib of dyteami

Figure 7.6: Discourse ILP output on excerpt from Figure 7.3.

by the discourse rather relying solely on the surface lewsluthent characteristics
(i.e., word frequencies).

7.3.2 Applying the Constraints

Our compression system is given a (sentence separatedestncument as input. The
model and constraints just presented are applied seqligmbiall sentences to gen-
erate a compressed version of the source. We thus createobedas ILP for every
sentence. In our earlier formulation of the compressiok, tasignificance score (see
Section 6.1.2) was used to highlight which nouns and verbsctade in the compres-
sion. As far as nouns are concerned, our discourse cortstgznform a similar task.
Thus, when a sentence contains discourse annotations,enaddined to trust them
more and only calculate the significance score for verbs.

During development it was observed that applying all dissewonstraints simul-
taneously (see Equations (7.3)—(7.2)) results in relgtiemng compressions. To coun-
teract this, we employ these constraints using a back-cdtesty that relies on pro-
gressively less reliable information. Our back-off modelriss as follows: if centering
information is present, we apply the appropriate constsajgquation (7.1)). If no
centers are present, we back-off to the lexical chain inédgrom using Equation (7.2),
and in the absence of the latter we back-off to the pronoustcaint (Equation (7.3)).
Finally, if discourse information is entirely absent frolmetsentence, we default to
the significance score. Sentential constraints are apgiiedighout irrespectively of
discourse constraints. In our test data the centering @nswas used in 68.6% of
the sentences. The model backed off to lexical chains faf%3f the test sentences,
whereas the pronoun constraint was applied in 8.5%. Findglé/noun and verb sig-
nificance score was used on the remaining 9.2%. Examples afystem’s output for
the texts in Figures 7.3, 7.4 and 7.5 are given in Figures7Z/and 7.8 respectively.
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Mrs Allan was taken to Kelowna Hospital. Her husband, Stsaid
he had been in contact with her since she flew to last month doj fin
her son. “She is suffering” he said. “I spoke to her last neyid she
is under orders to have rest.”

Figure 7.7: Discourse ILP output on excerpt from Figure 7.4.

Policeman was jailed for raping an woman while he was on dutly|a
in uniform. Peter Anderson, Jowitt told him he had done “dgena
to trust”. Anderson, married with children, attacked themam in
allotment after agreeing to give her and a boyfriend a liftleo Drove
to allotment.

Figure 7.8: Discourse ILP output on excerpt from Figure 7.5.

7.4 Experimental Set-up

In this section we present our experimental set-up. We priettap the model of Mc-
Donald (2006) which we use for comparison with our approaeimceforth Discourse
ILP, and outline our parameter estimation strategy. Fnate provide a summary of
the evaluation methodology previously introduced.

Comparison with state-of-the-art An obvious evaluation experiment would involve
comparing the ILP model without any discourse constraigtsrest the discourse in-
formed model presented in this work. Unfortunately, the tmmdels obtain markedly
different compression ratBsvhich renders the comparison of their outputs problem-
atic. To put the comparison on an equal footing, we evaluatedapproach against
a state-of-the-art model that achieves a compression iratksto ours without tak-
ing discourse-level information into account. As discusseSection 2.2.3, McDon-
ald (2006) formalises sentence compression as a classifi¢ask in a discriminative
large-margin learning framework: pairs of words from thes@ sentence are classi-
fied as being adjacent or not in the target compression. A& lamnber of features are
defined over words, parts of speech, phrase structure trekgdependencies. These
are gathered over adjacent words in the compression anddfrdswn-between which

6The discourse agnostic ILP model has a compression rate.2¥#81when discourse constraints
are include the rate drops to 65.4%. Recall that the ILP n®ofteln Chapter 5.2 contained a simple
discourse constraint.
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were dropped.

McDonald’s (2006) model has a head start against our DiseoluP model; it
uses a large parallel corpus to learn from whereas we onlg hdew constraints and
use fifty sentences for parameter tuning. The comparisoheofwo systems allows
us to investigate whether discourse information is redahednen using a powerful
sentence compression model. Our earlier experiments itioBe&.4 demonstrate that
sentence-level constraints do not bring significant benffitMcDonald’s (2006) fully
supervised model.

Corpus There are three compression corpora available to us: thddawNis corpus,
the spoken corpus and the written corpus. The Ziff-Davigagppropriate for our pur-
poses since it consists of isolated sentences only. Theesgmkpus does not contain
documents in the traditional sense as they are not craftee tead easily. Coreference
resolution algorithms on which the centering algorithmaghave been developed pri-
marily for written text. Therefore we focus on the human awuéidl written compres-
sion corpus. This comprises of 82 stories (1,629 senterfic@r)the British National
Corpus and the LA Times Washington Post. The corpus is spbt48 documents
(962 sentences) for training purposes, three for developed sentences) and 31 for
testing (604 sentences).

Parameter Estimation ~ Our parameters are estimated in the same manner as in Sec-
tion 6.3. The language model required for our Discourse l{.§tesn was trained on

25 million tokens from the North American News corpus. Thgngicance score was
based on 25 million tokens from the same corpus. McDonaRD®§) system was
trained on the full training set (962 sentences) and thaifeatet was identical to his
original description. A slightly modified loss function weequired to encourage com-
pression on our data set (see Section 6.3 for details).

Evaluation Method  Following from Chapter 6 we perform a sentence-based evalu-
ation on compressions using F-scores computed over graonaheglations (see Sec-
tion 4.2 for details). The relational F-score evaluatioavides insight into how well
our systems are performing the isolated sentence compretsk. It will also allow

us to assess if the discourse constraints increase or réfaleigeiality of sentence-level
compressions. Besides the intrinsic evaluation, we alshwo evaluate the com-
pressed documents as a whole. In Section 4.3 we presentediment-level evalua-
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Model CompR| F-Score
McDonald 60.1% | 36.09%
Discourse ILP| 65.4% | 39.6%
Gold Standard 70.3% o

Table 7.1: Compression results: compression rate and relation-based F-score; * sig.
diff. from Discourse ILP (p < 0.05 using the Student t test).

tion designed to answer two questions: (1) are the docunmmpressions readable?
and (2) how much key information is preserved between theceodocument and its
target compression? We are assuming here that the comgdssement will function
as a replacement for the source.

We will first briefly recap our document-level evaluationgetvhich uses a question-
answering paradigm to measure the extent to which the ca@spdedocument can be
used to find answers for questions which are derived from tluece document. |If
the compressed document can answer the questions it inthéesompression con-
tains the core content from the source. Our evaluation iteonsist of six documents
with between five to eight questions per document. Each mues factual-based
and typically involves a who, what, where, when, how stylesjion requiring one
unambiguous answer.

Compressed documents and their accompanying questionsonesented to hu-
man subjects. Three compression conditions were chosdd:stpndard, Discourse
ILP and McDonald’s (2006) model. Each participant alsoddtee compressed docu-
ment on a seven point scale for readability. A high scoreasponds to high readabil-
ity and a low score to low readability. Sixty unpaid volureeook part in our Q&A
evaluation over the Internet.

The answers provided by the participants were scored agairenswer key. Each
answer is marked with a score of one for a correct answer anodaféncorrect answer.
In cases where two answers are required a score of 0.5 is eddod each correct
answer. The score for a compressed document is the averéageoéstion scores. All
subsequent tests and comparisons are performed on the dotsoore.
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Model Readability| Q&A
McDonald 2.65 54.4%7
Discourse ILP 3.00° 67.8%
Gold Standard ~ 5.27' 82.294

Table 7.2: Human Evaluation Results: average readability ratings and average percent-
age of questions answered correctly. *: sig. diff. from Gold Standard; T. sig. diff. from

Discourse ILP.

7.5 Results

As a sanity check, we first assessed the compressions pbdhyceur model and
McDonald (2006) on a sentence-by-sentence basis withkimgtéhe documents into
account. There is no hope for generating shorter documeétie icompressed sen-
tences are either too wordy or too ungrammatical. Table fidlvs the compression
rates (CompR) for the two systems and evaluates the qualithedf output using
F-score based on grammatical relations. As can be seen,isbeudse ILP compres-
sions are slightly longer than McDonald (65.4% vs. 60.1%)dboser to the human
gold standard (70.3%). This is not surprising: the Discelk®® model takes the entire
document into account, and compression decisions willigaty more conservative.
The Discourse ILP’s output is significantly better than Molalal in terms of F-score,
indicating that discourse-level information is generdibipful. Both systems could
use further improvement as inter-annotator agreement isrdtita yields an F-score
of 65.8%.

Let us now consider the results of our document-based evatudable 7.2 shows
the mean readability ratings obtained for each system amgdicentage of questions
answered correctly. We used arNAvVA to examine the effect of compression type
(McDonald, Discourse ILP, Gold Standard). Thei®@vA revealed a reliable effect on
both readability and Q&A. Post-hoc Tukey tests showed theDbhald and the Dis-
course ILP model do not differ significantly in terms of rebiliy. However, they are
significantly less readable than the gold standard: (0.05). For the Q&A task we
observe that our system is significantly better than McDabifal< 0.05), but signifi-
cantly worse than the gold standacd <€ 0.05).

These results indicate that the automatic systems lag défénhuman gold stan-
dard in terms of readability. When reading entire documesubjects are less tolerant
of ungrammatical constructions. We also find out that desgiatively low readabil-
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ity, the documents are overall understandable. The disesbased model generates
more informative documents — the number of questions aresveorrectly increases
by 15% in comparison to McDonald. This is an encouraging ltesiggesting that
there may be advantages in developing compression modsi€xploit contextual
information.

7.6 Summary of Chapter

In this chapter we have presented a novel method for perf@rsentence compres-
sion on a document-level basis. Central to our approach isigheof discourse-level
information which we annotate automatically. Our annotatalgorithms are robust
and complementary. They are inspired by two linguistic thesorelating to local co-
herence, Centering Theory and lexical cohesion; and pramgleompression model
with important information for document (as opposed to seag) compression.
Discourse related information is instilled into our modaidugh the integer linear
programming framework using a set of constraints. Thesstcaints are designed to
preserve the coherence of the source document and alsalpragditional evidence
about which entities are important. We have shown that owdehcan be successfully
employed to produce document compressions that preseevedite content of the
source better than state-of-the-art discourse agnostteisee compression models.






Chapter 8
Conclusions and Future Directions

This chapter summarises the main findings and contributbtiss thesis and outlines
future research directions.

8.1 Main Findings

This thesis has been concerned with the task of sentenceressim. We have in-
vestigated the broad spectrum of sentence compressian,tfre analysis of human
authored and automatically gathered compressions, toi@vah techniques of com-
pression systems and models for compression. The follovarag summary of the
central findings and contributions of this work:

1. We conducted a novel and detailed analysis of the sentmeression task.
This involved examining manual and automatic methods fda @&quisition
and resulted in the creation of two new publicly availablenpoession corpora
in the domains of spoken and written text. We found that hum#hored com-
pressions and those automatically obtained from the Z#b corpus are sub-
stantially different in several respects. These includengression rate, human
authored compressions are more conservative at compgesana word span
removal, humans tend to remove single words rather thae lalngases.

2. We have assessed whether automatic evaluation measurdxeaised for the
compression task. Our results show that grammatical eglatbased F-score (Rie-
zler et al. 2003) correlates reliably with human judgementss insight allowed
us to use larger test sets for comparing compression systedalso helped with
system development.

131
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3. Two judgement elicitation studies formed a major partwfmanual evaluation

setup. The first was a more rigorous formulation of the expental design pro-
posed by Knight and Marcu (2002) in which naive judges rategr@ssion out-
put along two dimensions: grammaticality and importance= bdified their
setup to only show one compression per source sentence aidiagn square
design. The second elicitation study was concerned witliahent-level, rather
than sentence-level, evaluation and followed a questiswar paradigm. Naive
judges were asked to read fully compressed documents angaqgestions de-
rived from the source material’'s core content. Their answesre compared with
a scoring scheme designed to assess the differences begoleestandard and
system generated compressions. This evaluation methgpddlolds promise
beyond sentence compression and could be used more ggneralaluate ab-
stractive or extractive summaries.

. We have presented a novel method for automatic sentemepression. A key

aspect of our approach is the use of integer linear progragrfor inferring
globally optimal compressions in the presence of lingaaly motivated con-
straints. We have shown how previous formulations of sex@e&ompression can
be recast as ILPs and extended these models with local abdlglonstraints
ensuring that the compressed output is structurally ancasémwell-formed.
Our experiments have demonstrated the advantages of theeaip Constraint-
based models consistently bring performance gains overetlaagithout con-
straints. These improvements are more impressive for rsdtlat require little
Or no supervision.

Finally, we extended our ILP compression model to full@oents rather than
isolated sentences. Important for the success of this sagileiability to anno-
tate documents with discourse information. We thus deesldpio annotation

algorithms inspired by linguistic theories relating to &coherence: Center
ing Theory and lexical cohesion. Using these annotationsstédled discourse
information into our compression models through constsiOur constraints
preserve the coherence of the source document and alsaerasditional ev-
idence about which entities are important. Using our qoestinswering eval-
uation we found that our discourse informed compressionahsdccessfully
produces document compressions that preserve the corentaftthe source
document better than a state-of-the-art discourse agreetience compression
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model.

8.2 Future Research Directions

In this thesis we have been solely focused on one instammiaif sentence com-
pression. When we introduced the task we outlined three fa¢hat will influence
the compression’s information content: (1) the user’s gaaknd knowledge, (2) the
user’s information need, and (3) the user’s compressiouiregpents. For this thesis
we have explored the most general instantiation of thederfgahat is, the compres-
sion takes into account general background knowledge dateseto the main topic
or topics of the document from which the sentence is drawnalii we have not im-
posed any compression related requirements such as lintitencompression rate or
changing the style of language between source sentenceanaession.

Obvious future research directions within sentence cosgio@ are examining
how to perform compression in the face of different compms$actors. The most
natural extension of this is query-focused compression lickvthe user expresses
their information desire as a query. Query-focused sunsatidn has been an integral
part of the past few Document Understanding Conferences.u$begs compression
requirements could be explored through providing compoasdor specific devices or
purposes. For example, in television captions and sustfitie display space is phys-
ically limited. A compression system would have to adapthe available space by
compressing longer sentences much more aggressively liloat@sones. In subtitling
the compressions must remain coherent in a similar way tameat compression
therefore, the discourse annotations are likely to helpigdmbetter compressions.

Other aspects of the compression task include investigagmw objective functions
and constraints for ILP-based models. As we have demoedttae ILP framework is
flexible and can allow for any linear objective function. &eld to the objective func-
tion are constraints. Thus far we have only explored hargiramts (constraints which
must always hold), however it would be interesting to iniggte soft constraints. Soft
constraints are constraints which have a cost associatediveém, the cost is incurred
in the objective function if the constraint is violated iretbolution. An important direc-
tion for future constraint research is how to automaticdilycover useful constraints
from compression corpora.

Within the wider task of summarisation, sentence compoedsolds promise. We
have already demonstrated that is possible to perform denticompressions by in-
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corporating discourse information into our models. Whilesd document compres-
sions can be considered as summaries, they differ conbigdram most summarisa-
tion work in that they are fairly long. However, we believestis the first step toward
understanding how compression can help summarisationte @ compression can
be viewed as part of the summarisation process which redlamsnents horizontally
by squeezing the sentences. Extraction, on the other hgundskes documents verti-
cally by removing sentences. These two methods can be cenhbira pipeline where
compression is performed followed by extraction or vicesaeiHowever, ideally these
two components should interface with one another thus aligwach component to
inform the other and guide the summary. This could be acHliaveLP by reformu-
lating existing extractive summarisation models as ILR$iategrating them into our
compression models. Such a formulation is an avenue forduasearch.

In our document compressions we only examined the effeaaa Icoherence. A
natural progression is to study the effect of global dissestructure (Dauanlll and
Marcu 2002) on the compression task. In general, it will befuigo assess the impact
of discourse information more systematically by incorpimg it into generative and
discriminative modelling paradigms. Our discourse animataalgorithms provide a
robust means of gathering discourse information. The sanylof our annotations
will allow discourse information to be easily incorporaiatb existing summarisation
systems that are currently largely discourse agnostic.

Integer Linear Programming (ILP) has been the central fvaonke adopted through-
out this thesis. We believe the approach holds promise f@ar@eneration applications
such as sentence level paraphrasing, headline generatiosuaxmarisation. The ad-
vantages of using an ILP framework are numerous. It allowgoablems to be mod-
elled in a well-defined mathematical manner in which theegbvovides the guarantee
of optimality. As we have demonstrated, ILP is a flexible fesvork which can model
a variety of different problems with the ability to includdditional constraints moti-
vated through syntactic, semantic or domain specific kndgge



Appendix A
Experimental Instructions

This appendix contains the instructions presented to onotators (see Chapter 3 for
details) and judges in our elicitation studies (see Chapter 4

A.1 Annotator Sentence Compression Instructions

This experiment is concerned with sentence compressionwibbe presented with
a selection of sentences from a news paper article. Youritsaslk compress each
sentence or mark it as inappropriate for compression.

Compressing a sentence involves taking a the original seatand producing a
shorter version while retaining the most important infotima contained within the
sentence.

The compressions you will produced should be constraineti at the com-
pressed sentence can only be composed of words found initfieabrsentence and
the ordering of words must not change. Words can only be rechérom the sentence,
there is no opportunity for the addition or reordering of dr

Ideally the compressed sentence will be grammatical aaghréte most important
information of the original sentence. Global coherenceughbe taken into account
when possible but not at the expense of the compression sttitence (although this
typically won't be the case).

Very few of the sentences will be inappropriate for compi@sslue to them being
very short or containing no information. When you come acsagsh a sentence you
should mark it is inappropriate and not attempt to compress i

There are no correct answers to this task. All compressioodyzed are consid-
ered valid provided they have been made while considering:
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e The most important information in the original sentence.

e The grammaticality of the compressed sentence.

A.1.1 Interface

The interface will present you with a selection of documeatshoose from. Please
only select documents you have not done compressions for.

You will then be asked for your name and email address; thesesed for tracking
purposes and will not be passed onto any third party.

A list of sentences will be displayed with a checkbox undatheach word. Plac-
ing a tick in the box will remove the word (or punctuation) fniadhe sentence; this
will be reflected immediately in the compressed sentence Hake sentence is not
appropriate for compression, then please tick the inapjatgpbox.

A.1.2 Examples

Here are some examples of compressed sentences:

Example 1

e Seven states will hold presidential primaries or caucuses Tuesday and Pres-
ident Bush campaigned today in one of the most importargstaBeorgia .

e States will hold primaries or caucuses next Tuesday anddemsBush cam-
paigned in Georgia .
Example 2

e Even though they may not like it , most women learn to toletksmg probed
and examined in awkward positions .

e Women learn to tolerate being probed and examined in awkpasdions .

Example 3

e The FBI also found former White House Deputy Counsel Vincerst&o's fin-
gerprints on them .

e The FBI found Vincent Foster ’s fingerprints on them .
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Example 4

e Sergei, who is a licensed surgeon , now practices healingea$pirit , his only
instruments his hands and a bent wire that measures humagydredds for
curses that cause illness and depression .

e Sergei practices healing of the spirit , his only instrunsdms hands and a bent
wire that measures human energy fields for curses that cthosgsiand depres-
sion .

Example 5

e Sgt. Zuniga , when he first came on board , he had just gotteriedarand , so
I- 1 mean, | was surprised .

e Sgt. Zuniga , when he first came on board , had just gotten etarrand so |
was surprised .

Example 6
e Their spirit is just unbelievable - unbelievable spirit .

e Their spirit is unbelievable .

A.2 Sentence-level Evaluation Instructions

In this experiment you will be asked to judge how well a giventence compresses
the meaning of another sentence. You will see a series oéisees together with their
compressed versions. Some sentence compressions willpsrésntly OK to you, but
others will not. All compressed versions were generatedraatically by a computer
computer program.

Your task is to judge how good a compressed sentence is acgdodwo criteria:
(a) grammaticaility, and (b) importance. The grammattgglidgement is based on
whether the sentence is understandable. The importangenueht relates to how well
the compression preserves the most important informatidinecoriginal and whether
it is adequately compressed. Both judgements are ratedadessitom 1 (poor) to 5
(good).
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A compression with a low grammaticality score is one thatlmscst impossible
to understand. Compressions should receive low importacmes if they miss out
important information from the original sentence. Or do r@hove any superfluous
information from the original sentence even though it ilewit that it can be omitted
without drastic information loss.

A good compression is one that is readily comprehensibleratadns the most
important information from the original sentence. Goodteane compressions should
receive a high grammatical score and importance score.

For example, if you were asked to rate the following compogss

¢ Nonetheless, FBI director Louis Freeh has today orderedagsh- this is being
reported by the New York Times - ordering new restrictionstio@ sharing of
confidential information with the White House.

e Nonetheless, FBI director ordered change new restrictionsh&aring confi-
dential information with White House.

This sentence would probably receive a low grammaticakiyrs (for example,
1 or 2) as it is difficult to understand. However it should tgeea high score for
importance (for example, 4 or 5) as it is possible to get tls¢ gfi the original. Now,
consider the following compression of the same sentence:

¢ Nonetheless, FBI director Louis Freeh has today ordereédagsh- this is being
reported by the New York Times - ordering new restrictionstioa sharing of
confidential information with the White House.

e FBIl director Louis Freeh has today ordered a change - this is beg reported
by the New York Times.

You would give the compression a higher grammaticality eqéor example, 4 or
5) but a low importance score (for example, 1 or 2). The cosgon preserves the
least important information (the fact that the New York Tsrie reporting). On the
other hand, if you were given the following compression:

¢ Nonetheless, FBI director Louis Freeh has today orderedagsh- this is being
reported by the New York Times - ordering new restrictionstioa sharing of
confidential information with the White House.
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e FBI director Louis Freeh ordered new restrictions on sharing confidential
information with the White House.

You would probably give it a high number for both grammatityehnd importance
(for example 4 or 5). Here, the compression is meaningfrtgnatical), it produces
a short version of the original sentence while retainingontgnt pieces of information
(i.e., the changes that have been ordered).

You will be presented with the original sentence first. Péessad the original
sentence and then click on the Show Compression link. Readatim@ression then
make your judgements. The compression will always be pteden bold.

There are no ‘correct’ answers, so whatever number seeme@jgte to you is
a valid response. While you are deciding a number for a corsmestry to ask the
following questions:

e Does the compressed sentence preserve the most impotisaiof biformation
from the original sentence?

¢ Is the compressed sentence easy to understand?

e Has the compressed sentence removed information you deeno e very
important to the original sentence?

e Does the compressed sentence seem fluent?

Use high numbers if the answer to the above questions is, ‘i@snumbers if it is
‘no’, and intermediate numbers for sentences that are statetable, yet not entirely
accurate or natural compressions of the original sentefigeto make up your mind
quickly, base your judgments on your first impressions.

The experiment will take approximately 20 minutes.

A.3 Document-level Evaluation Instructions

You will be given three summaries to read. Each summary has betomatically
created by a computer. Some of these summaries will be mérerent (flow better)
than others. You will be asked to give a readability ratingach summary on a scale
of 1 to 7 (low to high). The rating should reflect how compregible the summary
is. If a summary does not flow naturally, the topic changesakpected moments, or
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the text is difficult to read then you should give a low ratikfijgher ratings should be
given to texts that readily flow and are understandable.

Once you have read the summary and rated its readability ylbbenasked a series
of questions. For each question you can consult the summapé answer. Some
guestions may not be answerable from the summary as theriafamn may have been
omitted. In this case you should indicate ‘no answer’ ushgcheck box. Please do
not attempt to guess the answers, only write the answer ifcaoudetermine it from
the summary.

Questions will be displayed one at a time. Once you have aesie question
you cannot go back and adjust the answer (as later questiaypsaveal more details).
Please do not use your browser’s back button.

The experiment will take approximately 15 to 20 minutes.

Examples

South Korea'’s current account surplus for the first six meridil 58% to$2.4 billion

from $5.8 billion. The drop was attributed to the sharply reduceatl surplus. Dur-
ing the first half, exports grew by a mere 6.8% from a year eath $29 billion while

imports surged 19% t&27 billion. The trade surplus shrank 2 billion from $4.5

billion.

This summary flows well and is understandable thus it shoeteive a high read-
ability score such as 6 or 7.

The drop was attributed by the bank. Current account for thensiaths of 1989
fell. The drop was by the bank to sharply reduced trade surguging the first ex-
ports grew a mere from a year earlier #7 billion. As a result, shrank té2 billion
from $4.5 billion.

In contrast this summary is difficult to read. It does not fldvwor example, we first
learn about a drop but we do not know what the drop occurrett is.also difficult to
read in parts. Thus the readability score should be low,ra@@upor 3 as some sentences
are still readable.

Finally given the question:
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Which country has seen a drop in their current account swgplu

From the first example the correct answer is South Korea. Mewthe second ex-
ample does not provide an answer to this question, thus ulghme marked with no
answer.






Appendix B

Documents and Question-Answer

Pairs

In this appendix we provide the documents and question asmterrpairs derived for
the document compression evaluation. These five docunsatsy with the document
in Chapter 4 (Figures 4.5 and 4.6) form the full evaluatiorfeethe human document
compression evaluation.

AHX.5: Full Text

A British woman may have found the body of her murdered 20-péc son after a
three-year hunt.

She was in a Canadian hospital last night suffering from esti@u Mrs Denise
Allan, 42, of Sowerby, West Yorks, led a campaign to find ouatmappened to her
son, Charles, after he vanished while trekking across Canada.

A body was found on Saturday in Okanagan lake 200 miles eagrmfouver. It
was discovered in 130 feet of water in the exact spot whereamanymous letters
written to Mrs Allan had said it would be. A post mortem exaation will take place
in Vancouver later today to confirm identification from ddm&cords.

Mrs Allan was taken to nearby Kelowna General Hospital @ftetbody was found.
Her husband, Stuart, 52, said yesterday he had been in deitgat with her since she
flew to Canada last month on the second pilgrimage to find her“8&ire is suffering
from exhaustion but otherwise fine,” he said. “I spoke to kst hight and she is under
strict orders to have complete rest. She is spending two idalated from the world.”

Mr Allan, a garment manufacturer who married Denise five gego, said she was
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“deeply upset”. He plans to fly to Canada on Wednesday to bengndme. “It's been
building up to this. Everything has pointed towards a bodndpéound.”

“If it hadn’t been for her courage and fortitude in going dog¢te and taking on the
role of investigator, private detective and motivator,9&diles would still be closed
and the police would just have an unsolved case of a missirsppé

Police now considered the case a murder inquiry and wereadipgdor any infor-
mation that would lead to the killer. Mrs Allan’s son disapped in May, 1989, after
a party during his back-packing trip across North Americathihg was heard from
him after he faxed a message home giving arrangements fandtiser to meet him to
celebrate her 40th birthday.

She flew to Canada to retrace his steps a month later but hatilita edter running
out of money. After two years with no news, Mrs Allan sold heabty salon in
Bradford and raised a £20,000 loan to resume the search éragat

After she placed an advertisement in a Canadian newspapanaaymous hand-
written letter was delivered to her motel. It said: “We wematging with your son
on May 26 and this is the last time we could establish that healige. Two people
knocked him out but he died. His body is in Lake Okanagan bytluge.”

An underwater search was launched. Mrs Allan used her owdsfom hire local
divers and a submersible camera crew at a cost of £500 per day.

Then last week a second note, in the same handwriting, irddrivirs Allan that
the search was on the wrong side of the bridge. The body waslifaulay later.

Mr Allan, who likened his wife’'s campaign to that of the fatloé murdered British
woman Julie Ward in Kenya, said: “It's most important we haeenething positive
even though it is bad news.”

AHX.5: Questions and Answers

Who is Mrs Allan looking for? (her son)

What happened to Mrs Allan’s son? (he disappeared)

What gave her the location of her son’s body? (anonymougdgtte

Where did Mrs Allan fly to once she learnt her son was missingh@Ga)

What did Mrs Allan sell to resume the search? (her beauty $alon

After what actions did she receive the letter about her spt&téd adverts in the local
papers)

What did Mrs Allan do to search for her son’s body in the lake®ethdivers and
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camera crew)
What is Mrs Allan’s current phyisical condition? (sufferifgm exhaustion)

A3G.15: Full text

The Treasury is refusing to fund a further phase of the cithm®logy colleges. Plans
for the creation of 20 CTCs by 1990 were announced by KennetleB#ke then
Secretary of State for Education and Science, at the CorisenRarty conference
in October 1986. They were to be a new form of secondary schetbeacons of
excellence” — funded mainly by industry, and would concat&ion science and tech-
nology. But the Government has been severely embarrassie liyirgeoning cost of
the programme.

Mr Baker had said that industrial sponsors would pay “all sulstantial part” of
the capital costs. The lack of sponsors has meant the taxpagéad to foot more of
the bill. The Department of Education and Science said y&ayehat the Government
had spent £19.7m on CTCs and there was a further planned exrenoler the next
three years of £106.2m. So far industry had contributed £44m

Sir Cyril Taylor, the Government’s adviser on CTCs, who hadieabeen suc-
cessful in persuading Mr Baker to commit more governmenti§uto the 20 schools,
had been hoping to get more money for a new round of schools$.s®uwces have
confirmed that this has been ruled out by the Treasury in theturound of public
expenditure talks. But yesterday, Susan Fey, of the CTC ;Tsagd , “We were only
ever given a target of 20. We have never been to Treasury téoagknds for more
than 20. Of course there have been discussions betweenukeahd civil servants
but nothing has gone to Pesc (the expenditure talks).”

Although Sir Cyril had spoken in January 1988 about “hundired<TCs, these
would be funded by local education authorities. Jack Sttakour's shadow educa-
tion secretary said yesterday at the Labour Party conferérat the news to abandon
further CTCs marked “the death of an expensive corrupt fias¢octwhas already
cost the taxpayer millions”. “But so rotten has the policpyed that not even a ‘tax-
payer bail-out’ could save it. Indeed even Britain’s blugdbusinesses boycotted the
scheme despite being put under intense personal and pbptiessure,” he added.

Mr Straw said this involved “veiled threats if they did notugh up and clear
promises of honours if they did”. He added: “What is so appgliis that millions
of pounds which should have been invested in children s atilut has been squan-
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dered in pursuit of electoral advantage.” He will renew gah the public accounts
committee to conduct a full investigation into “this disgeful waste of the funds so
vital to the education of our children”. He is also writingiohn McGregor, the Ed-
ucation Secretary, urging him not only to abandon the ideadaiitional CTCs but to
hand over those in the pipeline to local authorities.

A3G.15: Questions and Answers

Who are CTCs costing money? (tax payers OR the treasury)

Who was meant to pay for CTCs? (industry sponsors)

What is Jack Straw calling for? (an investigation)

What areas of education would CTCs concentrate on? (sciendeemiblogy)
How much money has the government spent on CTCs? (£19.7 nillion
How much further expenditure is planned? (£106.2 million)

How many CTCs are the government planning on building? (20)

A59.27: Full text

A Policeman was yesterday jailed for seven years for rapmd&year-old woman
in his marked patrol car while he was on duty and in uniformnt8ecing Constable
Peter Anderson, 41, Mr Justice Jowitt told him he had donedgdamage to the trust
in police”.

Anderson, married with two children, attacked the woman deserted allotment,
after agreeing to give her and a boyfriend a lift home from scdiheque. He first
dropped the man off and then drove to the allotment. He taresat her by forcing
his truncheon under her chin and then raped her. She said ljjaedrained from
inserting his truncheon into her, after she begged him no®fterwards he told her
not to report the incident because he could have her “nicked$oliciting. She did
not report it because she did not think she would be believed.

Police investigated after an anonymous report. The victiow 20, said she had
drunk nine or 10 Pernods with blackcurrant and was merrykbetv what she was
doing and saying. She said she tried to push him off, but heta@g$orceful. Mr
Justice Jowitt told Anderson: “I accept that you were not loa prowl looking for a
victim and that it was by chance that this young lady got indarycar. | accept that
there was no great degree of violence used by you. But youheolagainst her will
in your car to the place where this rape happened, and one ofetty disturbing and
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serious features of this case is the way you abused yourgosis a police officer in
uniform on duty.” The judge added: “ This girl plainly trustBerself in your company,
as she was entitled to. The public expect that they can tregidlice with confidence.
You did great damage to that trust in the police when you bethavthis way.”

Anderson, who had pleaded not guilty and claimed the womahhaaded him
“sex on a plate”, was convicted by a 10-2 majority of raping tioman on 4 April,
last year. He claimed she had instigated the intercoursediydnd without invitation,
performing oral sex on him. He said he had only offered to hedruncheon as a sex
aid but desisted when she shook her head.

Jean Southworth, Qc, in mitigation, said: “This was not aeaafshim taking away
the virginity of this young woman. He has lost his pensiorhtsgand the personal
affection of those dear to him and also, when a police offic&sgo prison, he often
carries an extra load for his misdoings.”

A59.27: Questions and Answers

What crime has the policeman committed? (rape)

What has been damaged as a result of the rape? (trust in tice)poli

What is the policeman’s defence? (She instigated the intfdBwshe handed sex on a
plate)

Where did the incident take place? (in an allotment)

What is the main punishment the policeman received? (a jaiesee)

What benefits did the policeman lose? (pension rights)

A96.17: Full Text

A Turkish print worker alleged yesterday that a Harley Stig@ctor paid £2,500 for
him to donate a kidney to a patient whom he believed was afaltmintryman.

Mr Ferhat Usta, a Muslim, said he realised minutes beforeotfexation that his
kidney was going to a Briton. “l suddenly got out of bed halked. | realised | was
being deceived,” he told the General Medical Council’s pssienal conduct commit-
tee.

Mr Usta, aged 34, who lives with his wife, mother and threegtders in a shack
in an Istanbul shanty town, described how he came to Londsiryé&ar, attracted by a
newspaper advertisement offering money to kidney donoeswbinted to raise £2,000
to treat one of his children who suffered from a tubercul@rihfection.
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Mr Usta was examined by Dr Raymond Crockett, a Harley Stregiptan special-
ising in kidney disease. Dr Crockett, Mr Michael Bewick, adegy kidney transplant
surgeon, and Mr Michael Joyce, a urologist at Guy's Hospttahy professional mis-
conduct over their involvement in transplanting kidneysirfour living Turks, all of
whom were paid for the organs.

Mr Usta recalled how two brothers, described as “kidney brek handed him
£2,500 in cash on the night before the operation in July 198&aking through an
interpreter, Mr Usta said: “As far as | can figure it out, ong tb@fore the operation
the cheque was given by Dr Crockett, it was changed and theyrgwen to me that
night.”

On Monday, the first day of the hearing, Mr Roger HendersonfQrcthe Gmc,
said Dr Crockett’s notes included a bill for £20,000 for a Mrd&scribed as a Briton
living in Israel who was suffering from a disease affecting kidneys.

Mr Usta said he had come to London under the impression teatitihey was to
be donated to one of the “broker” brothers, Ata Nur Kuntar.hdd said to Mr Kuntar:
“You could have told me the truth from the very beginning. Bese | am a very poor
man you made me accept a figure like six million lire (E2,509).Englishman, if he
is going to have an operation in a hospital like that, | am $i@evould have at least
£5,000 in his pocket. | told him that | wanted £5,000 from hide then accepted this
and he told me he was going to pay me the other £2,500 in Turk@&yrkish money.”
He said he never received the extra money.

The hearing continues today.

A96.17: Questions and Answers

What organ is being donated? (kidney)

How much was Mr Usta paid? (£2,500)

Who are the kidneys going to? (Britons)

Why did Mr Usta think he was deceived? (he believed the kidney going to a Turk
or fellow countryman)

Why did Mr Usta agree to sell his kidney? (to treat his child)

AAC.10: Full Text

The Ford Motor Company faces an all-out strike next monttofeithg the 4-1 ballot
rejection yesterday of a two-year pay deal by its 32,000 llyqaaid workers.
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They will be pressing for a settlement of more than 10 per centhat will be the
most severe test of the Government’s inflation policy. The-fwar deal amounted to
9.5 per cent for the first year and inflation plus 2.5 per centtie second. Improve-
ments in certain allowances were made, described as divisithe unions, but the
company has refused to compromise on a reduction in theesh@arking week.

Ford dismissed an immediate meeting with the unions but didrule out talks
after Christmas. It said that a strike would be damaging t@tmpany and to its staff.

Production closed down at Ford last night for the Christmasode Plants will
open again on January 2.

Staff voted 20,343 in favour of action, with 4,727 againsheTelectricians are
holding a postal ballot with the results announced after &imas. The unions said
that they were looking for the second week in January to bagiall-out stoppage.

Mr Jimmy Airlie, secretary of the Ford union side, said: “Wepected to get a
favourable majority. This exceeded even our expectatidvisJack Adams, chairman
of the union side, said that action would have to take plateima 28-day period from
yesterday’s anouncement or it would be ruled out of orderthéeight the big strike
vote was partly due to Ford’s record profits last year of £678ans.

The company is likely to be affected by a series of unoffidiappages before any
official action begins, as it was in the lead up to negotiaiamen Ford’s final offer
was rejected last month.

AAC.10: Questions and Answers

What is Ford facing? (a strike)

What caused the strike? (the rejection of a pay deal)

What are the unions pressing for? (more than 10% increaseyin pa

Is Ford willing to hold talks with the unions? (they havenited talks out)
What effect will the strike have? (damaging to company anff)sta






Bibliography

Bangalore, Srinivas, Owen Rambow, and Steve Whittaker. 2@3@luation metrics
for generation. InProceedings of the International Natural Language Generat
Conference (INLG-2000)

Barzilay, R. and M. Elhadad. 1997. Using lexical chains &t tsummarization. In
Proceedings of the Intelligent Scalable Text Summarinadtiorkshop (ISTS), ACL-

97.

Barzilay, Regina and Mirella Lapata. 2006. Aggregationsaapartitioning for natural
language generation. Rroceedings of the Human Language Technology Confer-
ence of the North American Chapter of the Association for Caatimunal Linguis-
tics. New York, NY, pages 359-366.

Barzilay, Regina, Kathleen R. McKeown, and Michael Elhade&a99. Information
fusion in the context of multi-document summarization Pioceedings of the 37th
conference on Association for Computational Linguist&ssociation for Compu-

tational Linguistics, pages 550-557.

Bramsen, Philip, Pawan Deshpande, Yoong Keok Lee, and Rdmnzilay. 2006.
Inducing temporal graphs. IRroceedings of the 2006 Conference on Empirical
Methods in Natural Language Processidgsociation for Computational Linguis-

tics, Sydney, Australia, pages 189-198.

Briscoe, E. J. and J. Carroll. 2002. Robust accurate statistihnotation of general
text. InProceedings of the Third International Conference on LanguBesources
and Evaluation (LREC 2002pages 1499-1504.

Brown, Peter F., Vincent J. Della Pietra, Stephen A. Del&j and Robert L. Mercer.
1993. The mathematics of statistical machine translatjgarameter estimation.
Computational Linguistic49(2):263-311.

151



152 Bibliography

Charniak, Eugene. 2000. A maximum-entropy-inspired parsgarProceedings of
the 1st North American Chapter of the Association for Compartat Linguistics
Seattle, WA, pages 132-139.

Charniak, Eugene. 2001. Immediate-head parsing for laregoemglels. IrMeeting of
the Association for Computational Linguistiggages 116-123.

Church, Kenneth Ward. 1988. A stochastic parts program ameh phrase parser
for unrestricted text. IrProceedings of the second conference on Applied natural
language processingAssociation for Computational Linguistics, MorristownJN
USA, pages 136-143.

Clarke, James and Mirella Lapata. 2006a. Constraint-baseersze compression: An
integer programming approach. Rroceedings of the COLING/ACL 2006 Main
Conference Poster Sessiomsssociation for Computational Linguistics, Sydney,
Australia, pages 144-151.

Clarke, James and Mirella Lapata. 2006b. Models for senteog®ression: A com-
parison across domains, training requirements and evwafuateasures. |iPro-
ceedings of the 21st International Conference on Computaltibmguistics and
44th Annual Meeting of the Association for Computationablistics Association
for Computational Linguistics, Sydney, Australia, pages-384.

Clarke, James and Mirella Lapata. 2007. Modelling compoesgiith discourse con-
straints. InProceedings of the 2007 Joint Conference on Empirical Meslio®atu-
ral Language Processing and Computational Natural Languaggning (EMNLP-
CoNLL) Prague, pages 1-11.

Clarke, James and Mirella Lapata. 2008. Global inferencesdotence compression:
An integer linear programming approaclournal of Artificial Intelligence Research
(JAIR)31:399-429.

Clarkson, Philip and Ronald Rosenfeld. 1997. Statisticgajlege modeling using the
CMU-cambridge toolkit. IrlProc. Eurospeech '97Rhodes, Greece, pages 2707—
2710.

Collins, Michael. 1997. Three generative, lexicalised meder statistical parsing.
In Proceedings of the 35th annual meeting on Association forptaational Lin-
guistics Association for Computational Linguistics, MorristownJNJSA, pages
16-23.



Bibliography 153

Collins, Michael. 2000. Discriminative reranking for nattanguage parsing. In
ICML '00: Proceedings of the Seventeenth International Ceamfee on Machine
Learning San Francisco, CA, USA, pages 175-182.

Cormen, T. H., C. E. Leiserson, R. L. Rivest, and C. Stein. 200@roduction to
Algorithms, 2nd editionMIT Press, McGraw-Hill Book Company.

Corston-Oliver, Simon. 2001. Text Compaction for Display arywSmall Screens.
In Jade Goldstein and Chin-Yew Lin, editoRroceedings of the Workshop on Au-
tomatic Summarization at the 2nd Meeting of the North AraeriChapter of the
Association for Computational Linguistigzages 89-98.

Crammer, Koby and Yoram Singer. 2003. Ultraconservativenenalgorithms for
multiclass problemsJournal of Machine Learning Resear8051-991.

Dantzig, George B. 1963.inear Programming and ExtensionBrinceton University
Press, Princeton, N.J.

Daune lll, Hal and Daniel Marcu. 2002. A noisy-channel model focdment com-
pression. IProceedings of the 40th Annual Meeting of the Associatio@&mpu-
tational Linguistics (ACL — 2002Philadelphia, PA, pages 449 — 456.

Denis, Pascal and Jason Baldridge. 2007. Joint deterromafi anaphoricity and
coreference resolution using integer programmingHiman Language Technolo-
gies 2007: The Conference of the North American Chapter of gsedation for
Computational Linguistics; Proceedings of the Main ConfeeefiRochester, NY,
pages 236—243.

Dras, Mark. 1999.Tree Adjoining Grammar and the Reluctant Paraphrasing ot.Te
Ph.D. thesis, Macquarie University.

Eisner, Jason M. 1996. Three new probabilistic models fpeddency parsing: an
exploration. InProceedings of the 16th conference on Computational Litigais
Association for Computational Linguistics, Morristown, NISA, pages 340-345.

Endres-Niggemeyer, Brigitte. 1998 ummarising InformatianSpringer, Berlin.

Frank, Anette. 1999. From parallel grammar developmentatd#& machine transla-
tion. In Proceedings of the MT Summit VII. MT in the Great Translatwa. Kent
Ridge Digital Labs, Singapore, pages 134-142.



154 Bibliography

Galley, Michel and Kathleen McKeown. 2003. Improving woghse disambigua-
tion in lexical chaining. InProceedings of 18th International Joint Conference on
Artificial Intelligence (IJCAI-03)pages 1486-1488.

Galley, Michel and Kathleen McKeown. 2007. Lexicalized kaargrammars for sen-
tence compression. lim Proceedings of the North American Chapter of the Asso-
ciation for Computational Linguistics (NAACL-HLT-200Rochester, NY.

Germann, Ulrich, Michael Jahr, Kevin Knight, Daniel Mar@and Kenji Yamada.
2004. Fast and optimal decoding for machine translatiémtificial Intelligence
154(1-2):127-143.

Gomory, R. E. 1960. Solving linear programming problemsitegers. In R. Bellman
and M. Hall, editorsCombinatorial analysis, Proceedings of Symposia in Applied
MathematicsProvidence, RI, volume 10.

Grefenstette, Gregory. 1998. Producing Intelligent Tielpgic Text Reduction to Pro-
vide an Audio Scanning Service for the Blind. In Eduard Howgd &ragomir R.
Radeyv, editorsProceedings of the AAAI Symposium on Intelligent Text Suinaa
tion. Stanford, CA, pages 111-117.

Grishman, Ralph, Catherine Macleod, and Adam Meyers. 199hl&osyntax: build-
ing a computational lexicon. IRroceedings of the 15th conference on Computa-
tional linguistics Association for Computational Linguistics, Morristown) NUSA,
pages 268—-272.

Grosz, Barbara J., Scott Weinstein, and Aravind K. Jost851%entering: a frame-
work for modeling the local coherence of discours€omputational Linguistics
21(2):203-225.

Halliday, M. A. K. 1985.Spoken and Written Languag@®xford University Press.
Halliday, M. A. K. and Rugaiya Hasan. 1971®ohesion in EnglishLongman, London.

Hooker, John N. 2002. Logic, optimization, and constranagogamming.INFORMS
Journal on Computing4(4):295-321.

Hori, Chiori and Sadaoki Furui. 2003. A new approach to autmrspeech summa-
rization. IEEE Transactions on Multimedia(3):368—-378.



Bibliography 155

Hori, Chiori and Sadaoki Furui. 2004. Speech summarizateonapproach through
word extraction and a method for evaluatioleEICE Transactions on Information

and SystemB87-D(1):15-25.

Hori, Chiori, Sadaoki Furui, Rob Malkin, Hua Yu, and Alex Walb2003. A statistical
approach for automatic speech summarizatEldRASIP Journal on Applied Signal

Processingpages 128-139.

Hori, Chiori, Tsutomu Hirao, and Hideki Isozaki. 2004. Eaion measures con-
sidering sentence concatenation for automatic summantzaly sentence or word
extraction. In Stan Szpakowicz Marie-Francine Moens,cedliext Summarization
Branches Out: Proceedings of the ACL-04 Worksh&gsociation for Computa-
tional Linguistics, Barcelona, Spain, pages 82—-88.

Jelinek, Frederick. 1997%Statistical methods for speech recognitidAl T Press, Cam-
bridge, MA, USA.

Jing, Hongyan. 2000. Sentence reduction for automaticsgxtmarization. IrPro-
ceedings of the 6th Applied Natural Language Processingé&®ente Seattle, WA,

pages 310-315.

Jing, Hongyan and Kathleen McKeown. 1998. Combining mdfitdrge-scale re-
sources in a reusable lexicon for natural language geperaitn Proceedings of the
17th international conference on Computational linguistisssociation for Com-
putational Linguistics, Morristown, NJ, USA, pages 607361

Jing, Hongyan and Kathleen McKeown. 1999. The decompasiiidiuman-written
summary sentences. Research and Development in Information Retriepaljes
129-136.

Johnson, Mark. 1998. Pcfg models of linguistic tree repregens. Computational
Linguistics24(4):613-632.

Knight, Kevin and Daniel Marcu. 2002. Summarization beyseadtence extraction: a
probabilistic approach to sentence compress#mtif. Intell. 139(1):91-107.

Lafferty, John, Andrew McCallum, and Fernando Pereira. 200@nditional random
fields: Probabilistic models for segmenting and labelinguesce data. IRroceed-
ings of the 18th International Conference on Machine Leagniiorgan Kaufmann,

San Francisco, CA, pages 282-289.



156 Bibliography

Land, A. H. and A. G. Doig. 1960. An automatic method for sodvdiscrete program-
ming problems Econometrice28:497-520.

Lapata, Mirella. 2006. Automatic evaluation of informatiordering. Computational
Linguistics32(4):471-484.

Levin, Beth. 1993English Verb Classes and Alternations: a preliminary inigegton.
University of Chicago Press, Chicago and London.

Lin, Chin-Yew. 2003. Improving summarization performangedentence compres-
sion — a pilot study. IfProceedings of the 6th International Workshop on Informa-
tion Retrieval with Asian LanguageSapporo, Japan, pages 1-8.

Lin, Dekang. 2001. LaTaT: Language and text analysis tolmi$?roceedings of the
1st Human Language Technology Conferer@amn Francisco, CA, pages 222-227.

Lustig, Irvin J. and Jean-Francois Puget. 2001. Prograes dot equal program: Con-
straint programming and its relationship to mathematicajppmming. Interfaces
31(6):29-53.

Mani, Inderjeet. 2001 Automatic SummarizationJohn Benjamins Publishing Com-
pany, Amsterdam/Philadephia.

Mani, Inderjeet, TBrese Firmin, David House, Gary Klein, Beth Sundheim, and
Lynette Hirschman. 2002a. The TIPSTER SUMMAC Text Sumnadion Eval-
uation. InNatural Language Engineeringolume 8, pages 43—68.

Mani, Inderjeet, Barbara Gates, and Eric Bloedorn. 1999prawing summaries by
revising them. InProceedings of the 37th annual meeting of the Association fo
Computational Linguistics on Computational Linguistiéssociation for Compu-
tational Linguistics, Morristown, NJ, USA, pages 558-565.

Mani, Inderjeet, Gary Klein, David House, Lynette Hirschhmaherese Firmin, and
Beth Sundheim. 2002b. SUMMAC: A text summarization evabratNatural Lan-
guage Engineering(1):43-68.

Mann, William C. and Sandra A. Thompson. 1988. Rhetoricalcstre theory: To-
ward a functional theory of text organizatiohext8(3):243-281.



Bibliography 157

Marciniak, Tomasz and Michael Strube. 2005. Beyond thelipipe Discrete opti-
mization in NLP. InProceedings of the Ninth Conference on Computational Natural
Language LearningAnn Arbor, MI, 29-30 June, 2005. pages 136-143.

Marcu, Daniel. 2000The Theory and Practice of Discourse Parsing and Summariza-
tion. MIT Press, Cambridge, MA, USA.

McCord, Michael C. 1989. Slot grammar: A system for simplerstarction of prac-
tical natural language grammars. Matural Language and Logipages 118-145.

McDonald, Ryan. 2006. Discriminative sentence compressith soft syntactic con-
straints. InProceedings of the 11th Conference of the European Chaptdreof t
Association for Computational Linguisticrento, Italy.

McDonald, Ryan. 2007. A study of global inference algorighm multi-document
summarization. Irfeuropean Conference on Information Retieval

McDonald, Ryan, Koby Crammer, and Fernando Pereira. 2008zibke text segmen-
tation with structured multilabel classification. Rtoceedings of Human Language
Technology Conference and Conference on Empirical Methodsatural Lan-
guage ProcessingAssociation for Computational Linguistics, VancouverjtiBh
Columbia, Canada, pages 987-994.

McDonald, Ryan, Koby Crammer, and Fernando Pereira. 2008bn&large-margin
training of dependency parsers.48rd Annual Meeting of the Association for Com-
putational LinguisticsAnn Arbor, MI, USA, pages 91-98.

McDonald, Ryan, Fernando Pereira, Kiril Ribarov, and Janidd2005c. Non-
projective dependency parsing using spanning tree algost InProceedings of
Human Language Technology Conference and Conference oniEahplethods in
Natural Language Processingssociation for Computational Linguistics, Vancou-
ver, British Columbia, Canada, pages 523-530.

Miller, George A. 1995. Wordnet: a lexical database for &gl Commun. ACM
38(11):39-41.

Miltsakaki, Eleni and Karen Kukich. 2000. The role of cemgrtheory’s rough-shift
in the teaching and evaluation of writing skills. Rroceedings of the 38th Annual
Meeting of the Association for Computational Linguistic€(A2000) pages 408—
415.



158 Bibliography

Morris, A., G. Kasper, and D. Adams. 1992. The effects anddions of automated

text condensing on reading comprehension performahdermation Systems Re-
search3(1):17-35.

Morris, Jane and Graeme Hirst. 1991. Lexical cohesion caeaphy thesaural rela-
tions as an indicator of the structure of te®Kkomputational Linguistic&7(1):21-48.

Nemhauser, George L. and Laurence A. Wolsey. 1988eger and Combinatorial

Optimization Wiley-Interscience series in discrete mathematicalsaguittinization.
Wiley, New York, NY, USA.

Nguyen, Minh Le, Susumu Horiguchi, Akira Shimazu, and Bao Ho. 2004a.
Example-based sentence reduction using the hidden markoelmACM Trans-
actions on Asian Language Information Processing (TAI3E):146—-158.

Nguyen, Minh Le, Akira Shimazu, Susumu Horiguchi, Tu Bao Hmd Masaru
Fukushi. 2004b. Probabilistic sentence reduction usimgpsu vector machines.
In Proceedings of the 20th COLINGeneva, Switzerland, pages 743-749.

Poesio, Massimo, Rosemary Stevenson, Barbara Di EugemibJanet Hitzeman.
2004. Centering: a parametric theory and its instantiatiodemputational Lin-
guistics30(3):309-363.

Press, William H., Saul A. Teukolsky, William T. Vetterlingnd Brian P. Flannery.

1992. Numerical Recipes in C: The Art of Scientific Computii@ambridge Uni-
versity Press, New York, NY, USA.

Punyakanok, Vasin, Dan Roth, Wen-tau Yih, and Dav Zimak42@emantic role la-
beling via integer linear programming inference Aroceedings of the International

Conference on Computational Linguistics (COLINGeneva, Switzerland, pages
1346-1352.

Quinlan, J. R. 1993C4.5 — Programs for Machine Learninghe Morgan Kaufmann
series in machine learning. Morgan Kaufman Publishers.

Riedel, Sebastian and James Clarke. 2006. Incrementakmliegar programming
for non-projective dependency parsing. Rroceedings of the 2006 Conference on
Empirical Methods in Natural Language ProcessiAgsociation for Computational
Linguistics, Sydney, Australia, pages 129-137.



Bibliography 159

Riezler, Stefan, Tracy King, Ronald Kaplan, Richard Croudcinn T. Maxwell Ill, and
Mark Johnson. 2002. Parsing the wall street journal usimxial-functional gram-
mar and discriminative estimation techniques. Pimceedings of the 40th Annual
Conference of the Association for Computational Linguis(®SL-02) Philadel-
phia, PA, pages 271-278.

Riezler, Stefan, Tracy H. King, Richard Crouch, and Anniergae 2003. Statisti-
cal sentence condensation using ambiguity packing anthastic disambiguation
methods for lexical-functional grammar. Human Language Technology Confer-
ence and the 3rd Meeting of the North American Chapter of ttemdation for
Computational Linguistics (HLT-NAACL'03)ages 118-125.

Roark, Brian. 2001. Probabilistic top-down parsing andjleage modelingCompu-
tational Linguistics27(2):249-276.

Rosenblatt, Frank. 1988. The perceptron: a probabilistidehfor information storage
and organization in the brailfNeurocomputing: foundations of reseagghges 89—
114.

Roth, D. and W. Yih. 2005. Integer linear programming infere for conditional
random fields. IlProceedings of the International Conference on Machine hieay
(ICML). pages 737—744.

Roth, Dan and Wen-tau Yih. 2004. A linear programming foratioin for global in-
ference in natural language tasks. In Hwee Tou Ng and Ellé&ffReditors, Pro-
ceedings of the Annual Conference on Computational Naturaguage Learning
(CoNLL) Assaciation for Computational Linguistics, pages 1-8.

Salton, Gerald, editor. 1988Automatic text processingAddison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

Sang, Erik F. Tjong Kim and Fien De Meulder. 2003. Introdoietio the conll-2003
shared task: language-independent named entity recognitt Proceedings of the
seventh conference on Natural language learning at HLT-GIA2003 Association
for Computational Linguistics, Morristown, NJ, USA, pagek1147.

Sarawagi, Sunita and William W. Cohen. 2004. Semi-markowitamal random
fields for information extraction. IProceedings of Neural Information Processing

Systems



160 Bibliography

Shen, Libin, Anoop Sarkar, and Franz Josef Och. 2004. Discative reranking for
machine translation. In Daniel Marcu Susan Dumais and SRlkukos, editors,
HLT-NAACL 2004: Main ProceedingBoston, MA, USA, pages 177-184.

Sparck-Jones, Karen. 1998. Automatic summarising: facod directions. IiAd-
vances in Automatic Text SummarizatidHT Press, pages 1-14.

Sparck-Jones, Karen, Julia R. Galliers, and J. R. Galli&86. Evaluating Natural
Language Processing Systems: An Analysis and ReSjefinger-Verlag New York,
Inc., Secaucus, NJ, USA.

Tetreault, Joel R. 2001. A corpus-based evaluation of ceigt@nd pronoun resolu-
tion. Computational Linguistic&7(4):507-520.

Teufel, Simone and Marc Moens. 2002. Summarizing sciergtificles: experiments
with relevance and rhetorical statuSomput. Linguist28(4):409-445.

Turner, Jenine and Eugene Charniak. 2005. Supervised anghemssed learning
for sentence compression. Rroceedings of the 43rd Annual Meeting of the As-
sociation for Computational Linguistics (ACL'Q5Association for Computational
Linguistics, Ann Arbor, Michigan, pages 290-297.

Vandeghinste, Vincent and Yi Pan. 2004. Sentence comprefsi automated subti-
tling: A hybrid approach. In Stan Szpakowicz Marie-FramcMoens, editorText
Summarization Branches Out: Proceedings of the ACL-04 Wogk#ssociation
for Computational Linguistics, Barcelona, Spain, page<989—

Vanderbei, Robert J. 2001.Linear Programming: Foundations and Extensions
Kluwer Academic Publishers, Boston, 2nd edition.

Vapnik, Vladimir N. 1998.Statistical Learning TheoryWiley-Interscience.

Walker, Marilyn, Arivind Joshi, and Ellen Prince. 1998. Cenntig in naturally occur-
ring discourse: An overview. I€entering Theory in Discours®©xford University
Press, Oxford, pages 1-28.

Weiss, Sholom M. and Casimir A. Kulikowski. 199TComputer systems that learn:
classification and prediction methods from statistics,rakoets, machine learning,
and expert system$/lorgan Kaufmann Publishers Inc., San Francisco, CA, USA.



Bibliography 161

Williams, H. Paul. 1999 Model Building in Mathematical ProgrammindViley, 4th
edition.

Williams, H. Paul and John M. Wilson. 1998. Connections betwmmteger linear
programming and constraint logic programming-an overvavd introduction to
the cluster of articlesSINFORMS Journal on Computint)(3):261-264.

Winston, Wayne L. and Munirpallam Venkataramanan. 2d@8oduction to Mathe-
matical Programming - Applications and Algorithmi3uxbury, 4th edition.

Witbrock, Michael J. and Vibhu O. Mittal. 1999. Ultra-sumnzation: A statistical ap-
proach to generating highly condensed non-extractive sames (poster abstract).
In Research and Development in Information Retriepabes 315-316.

Zelenko, Dmitry, Chinatsu Aone, and Anthony Richardell2D20Kernel methods for
relation extractionJ. Mach. Learn. Re3:1083-1106.

Zhang, K. and D. Shasha. 1989. Simple fast algorithms foediteng distance between
trees and related problemSIAM Journal on Computin®8(6):1245-1262.



