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Abstract

Machine learning offers a range of tools
for training systems from data, but these
methods are only as good as the underly-
ing representation. This paper proposes to
acquire representations for machine learn-
ing by reading text written to accommo-
date human learning. We propose a novel
form of semantic analysis called read-
ing to learn, where the goal is to obtain
a high-level semantic abstract of multi-
ple documents in a representation that fa-
cilitates learning. We obtain this abstract
through a generative model that requires
no labeled data, instead leveraging repe-
tition across multiple documents. The se-
mantic abstract is converted into a trans-
formed feature space for learning, result-
ing in improved generalization on a rela-
tional learning task.

1 Introduction

Machine learning offers a range of powerful tools
for training systems to act in complex environ-
ments, but these methods depend on a well-chosen
representation for features. For learning to suc-
ceed the representation often must be crafted with
knowledge about the application domain. This
poses a bottleneck, requiring expertise in both ma-
chine learning and the application domain. How-
ever, domain experts often express their knowl-
edge through text; one direct expression is through
text designed to aid human learning. In this paper
we exploit text written by domain experts in or-
der to build a more expressive representation for
learning. We term this approach reading to learn.

The following scenario demonstrates the moti-
vation for reading to learn. Imagine an agent given
a task within its world/environment. The agent has
no prior knowledge of the task but can perceive the
world through low-level sensors. Learning directly
from the sensors may be difficult, as interesting

tasks typically require a complex combination of
sensors. Our goal is to acquire domain knowledge
through the semantic analysis of text, so as to pro-
duce higher-level relations through combinations
of sensors.

As a concrete example consider the problem of
learning how to make legal moves in Freecell soli-
taire. Relevant sensors may indicate if an object
is a card or a freecell, whether a card is a certain
value, and whether two values are in sequence.
Although it is possible to express the rules with
a combination of sensors, learning this combina-
tion is difficult. Text can facilitate learning by pro-
viding relations at the appropriate level of gen-
eralization. For example, the sentence: “You can
place a card on an empty freecell,” suggests not
only which sensors are useful together but also
how these sensors should be linked. Assuming the
sensors are represented as predicates, one possi-
ble relation this sentence suggests is: r(x, y) =
card(x) ∧ freecell(y) ∧ empty(y). Armed
with this new relation the agent’s learning task
may be simpler. Throughout the paper we refer to
low-level sensory input as sensor or predicate, and
to a higher level concept as a logical formula or re-
lation.

Our approach to semantic analysis does not re-
quire a complete semantic representation of the
text. We merely wish to acquire a semantic ab-
stract of a document or document collection, and
use the discovered relations to facilitate data-
driven learning. This will allow us to directly eval-
uate the contribution of the extracted relations for
learning.

We develop an approach to recover semantic ab-
stracts that uses minimal supervision: we assume
only a very small set of lexical glosses, which map
from words to sensors. This marks a substantial
departure from previous work on semantic pars-
ing, which requires either annotations of the mean-
ings of each individual sentence (Zettlemoyer and
Collins, 2005; Liang et al., 2009), or alignments
of sentences to grounded representations of the
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world (Chen and Mooney, 2008). For the purpose
of learning, this approach may be inapplicable, as
such text is often written at a high level of abstrac-
tion that permits no grounded representation.

There are two properties of our setting that
make unsupervised learning feasible. First, it is
not necessary to extract a semantic representation
of each individual sentence, but rather a summary
of the semantics of the document collection. Er-
rors in the semantic abstract are not fatal, as long
it guides the learning component towards a more
useful representation. Second, we can exploit rep-
etition across documents, which should generally
express the same underlying meaning. Logical for-
mulae that are well-supported by multiple docu-
ments are especially likely to be useful.

The rest of this paper describes our approach
for recovering semantic abstracts and outlines how
we apply and evaluate this approach on the Free-
cell domain. The paper contributes the following
key ideas: (1) Interpreting abstract “instructional”
text, written at a level that does not correspond
to concrete sensory inputs in the world, so that
no grounded representation is possible, (2) read-
ing to learn, a new setting in which extracted se-
mantic representations are evaluated by whether
they facilitate learning; (3) abstractive semantic
summarization, aimed at capturing broad seman-
tic properties of a multi-document dataset, rather
than a semantic parse of individual sentences; (4) a
novel, minimally-supervised generative model for
semantic analysis which leverages both lexical and
syntactic properties of text.

2 Approach Overview

We describe our approach to text analysis as mul-
tidocument semantic abstraction, with the goal of
discovering a compact set of logical formulae to
explain the text in a document collection. To this
end, we develop a novel generative model in which
natural language sentences (e.g., “You can always
place cards in empty freecells”) are stochastically
generated from logical formulae (e.g., card(x)∧
freecell(y) ∧ empty(y)). We formally define
a generative process that reflects our intuitions
about the relationship between formulae and sen-
tences (Section 3), and perform sampling-based
inference to recover the formulae most likely to
have generated the observed data (Section 4). The
top N such formulae can then be added as addi-
tional predicates for relational learning.

Our semantic representation consists of con-
junctions of literals, each of which includes a sin-
gle predicate (e.g., empty) and one or more vari-

ables (e.g., x). Predicates describe atomic seman-
tic concepts, while variables construct networks
of relationships between them. While the impor-
tance of the predicates is obvious, the variable
assignments also exert a crucial influence on the
semantics of the conjunction: modifying a sin-
gle variable in the formula above from empty(y)
to empty(x) yields a formula that is trivially
false for all groundings (since cards can never be
empty).

Thus, our generative model must account for the
influence of both predicates and variables on the
sentences in the documents. A natural choice is to
use the predicates to influence the lexical items,
while letting the variables determine the syntac-
tic structure. For example, the formula card(x)∧
freecell(y) ∧ empty(y) contains three pred-
icates and two variables. The predicates influence
the lexical items in a direct way: we expect that
sentences generated from this formula will include
a member of the gloss set for each predicate –
the sentence “Put the cards on the empty free-
cells” should be more likely than “Columns are
constructed by playing cards in alternating colors.”

The impact of the variables on the generative
process is more subtle. The sharing of the variable
y suggests a relationship between the predicates
freecell and empty. This should be realized
in the syntactic structure of the sentence. Model-
ing syntax using a dependency tree, we expect that
the glosses for predicates that share terms will ap-
pear in compact sub-trees, while predicates that do
not share terms should be more distant. One pos-
sible surface realization of this logical formula is
the sentence, “Put the card on the empty freecell,”
whose dependency parse is shown in the left tree
of Figure 1. The glosses empty and freecell are im-
mediately adjacent, while card is more remote.

We develop two metrics that quantify the com-
pactness of a set of variable assignments with
respect to a dependency tree: excess terms, and
shared terms. The number of excess terms in a
subtree is the number of unique terms assigned
to words in the subtree, minus the maximum arity
of any predicate in the subtree. Shared terms arise
whenever a node has multiple subtrees which each
contain the same variable. We will use the alterna-
tive alignments in Figure 1 to provide a more de-
tailed explanation. In each tree, the variables are
written in the nodes belonging to the associated
lexical items; variables are written over arrows to
indicate membership in some node in the subtree.

Excess Terms Alignment A of Fig-
ure 1, corresponding to the formula
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Figure 1: A dependency parse and four different variable assignments. Each literal is aligned to a word (a
node in the graph), and the associated variables are written in the box. Variables belonging to descendant
nodes are written over the arrows.

card(x)∧freecell(x)∧empty(x), has zero
excess terms in every subtree; there is a total of one
variable, and all the predicates are unary. In Align-
ment B, card(x) ∧ freecell(x) ∧ empty(y),
there are excess terms at the root, and in the top
two subtrees on the right-hand side. Alignment C
contains an excess term at only the root node.
Even though it contains the same number of
unique variables as Alignment B, it is not penal-
ized as harshly because the alignment of variables
better corresponds to the syntactic structure.
Alignment D contains the greatest number of
excess terms: two at the root of the tree, and one
in each of the top two subtrees on the right side.

Shared Terms According to the excess term
metric, the best choice is simply to introduce as
few variables as possible. For this reason, we also
penalize shared terms which occur when a node
has subtree children that share a variable. In Fig-
ure 1, Alignments A and B each contain a shared
term at the top node; Alignments C and D contain
no shared terms.

Overall, we note that Alignment B is penalized
on both metrics, as it contains both excess terms
and shared terms; the syntactic structure of the
sentence makes such a variable assignment rela-
tively improbable.

card(x) & freecell(y) & empty(y)

f(y)e(y)c(x)

f(y)e(y)c(x)

Put the card on the empty freecell

(a)

(b)

(c)

(d)

(e)

Figure 2: A graphical depiction of the generative
process by which sentences are produced from for-
mulae

3 Generative Model

These intuitions are formalized in a generative
account of how sentences are stochastically pro-
duced from a set of logical formulae. This gener-
ative story guides an inference procedure for re-
covering logical formulae that are likely to have
generated any observed set of texts, which is de-
scribed in Section 4.

The outline of the generative process is depicted
in Figure 2. For each sentence, we begin in step (a)
by drawing a formula f from a Dirichlet pro-
cess (Ferguson, 1973). The Dirichlet process de-
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fines a non-parametric mixture model, and has the
effect of adaptively selecting the appropriate num-
ber of formulae to explain the observed sentences
in the corpus.1 We then draw the sentence length
from some distribution over positive integers; as
the sentence length is always observed, we need
not define the distribution (step (b)). In step (c), a
dependency tree is drawn from a uniform distribu-
tion over spanning trees with a number of nodes
equal to the length of the sentence. In step (d) we
draw an alignment of the literals in f to nodes in
the dependency tree, written at(f). The distribu-
tion over alignments is described in Section 3.1.
Finally, the aligned literals are used to generate the
words at each slot in the dependency tree. A more
formal definition of this process is as follows:

• Draw λ, the expected number of literals per
formula, from a Gamma distribution G(u, v).
• Draw an infinite set of formulae f . For each

formula fi,

– Draw the formula length #|fi| from a
Poisson distribution, ni ∼ Poisson(λ).

– Draw ni literals from a uniform distri-
bution.

• Draw π, an infinite multinomial distribution
over formulae: π ∼ GEM(π0), where GEM
refers to the stick-breaking prior (Sethura-
man, 1994) and π0 = 1 is the concentra-
tion parameter. By attaching the multinomial
π to the infinite set of formulae f , we cre-
ate a Dirichlet process. This is conventionally
writtenDP (π0, G0), where the base distribu-
tionG0 encodes only the distribution over the
number of literals, Poisson(λ).

• For each of D documents, draw the number
of sentences T ∼ Poisson. For each of the T
sentences in the document,

– Draw a formula f ∼ DP (π0, G0) from
the Dirichlet Process described above.

– Draw a sentence length #|s| ∼ Poisson.
– Draw a dependency graph t (a spanning

tree of size #|s|) from a uniform distri-
bution.

– Draw an alignment at(f), an injective
mapping from literals in f to nodes in
the dependency structure t. The distribu-
tion over alignments is described in Sec-
tion 3.1.

1There are many recent applications of Dirichlet pro-
cesses in natural language processing, e.g. Goldwater et al.
(2006).

– Draw the sentence s from the formula
f and the alignment a(f). For each
word token wi ∈ s is drawn from
p(wi|at(f, i)), where at(f, i) indicates
the (possibly empty) literal assigned
to slot i in the alignment at(f) (Sec-
tion 3.2).

3.1 Distribution over Alignments
The distribution over alignments reflects our intu-
ition that when literals share variables, they will
be aligned to word slots that are nearby in the de-
pendency structure; literals that do not share vari-
ables should be more distant. This is formalized by
applying the concepts of excess terms and shared
terms defined in Section 2. After computing the
number of excess and shared terms in each sub-
tree ti, we can compute a local score (LS ) for that
subtree:

LS (at(f); ti) = α ·NShared(at(f), ti)
+ β ·NExcess(at(f), ti) · height(ti).

This scoring function can be applied recursively to
each subtree in t; the overall score of the tree is the
recursive sum,

score(at(f); t) = LS (at(f); t)+
n∑
i

score(at(f); ti),

(1)
where ti indicates the ith subtree of t. We hypoth-
esize a generative process that produces all possi-
ble alignments, scores them using score(at(f); t),
and selects an alignment with probability,

p(at(f)) ∝ exp{−score(at(f); t)}. (2)

In our experiments, we define the parameters α =
1, β = 1.

3.2 Generation of Lexical Items
Once the logical formula is aligned to the parse
structure, the generation of the lexical items in
the sentence is straightforward. For word slots to
which no literals are aligned, the lexical item is
drawn from a language model θ, estimated from
the entire document collection. For slots to which
at least one literal is aligned, we construct a lan-
guage model φ in which the probability mass is
divided equally among all glosses of aligned pred-
icates. The language model θ is used as a backoff,
so that there is a strong bias in favor of generating
glosses, but some probability mass is reserved for
the other lexical items.
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4 Inference

This section describes a sampling-based inference
procedure for obtaining a set of formulae f that
explain the observed text s and dependency struc-
tures t. We perform Gibbs sampling over the
formulae assigned to each sentence. Using the
Chinese Restaurant Process interpretation of the
Dirichlet Process (Aldous, 1985), we marginalize
π, the infinite multinomial over all possible for-
mulae: at each sampling step we select either an
existing formula, or stochastically generate a new
formula. After each full round of Gibbs sampling,
a set of Metropolis-Hastings moves are applied to
explore modifications of the formulae. This proce-
dure converges on a stationary Markov chain cen-
tered on a set of formulae that cohere well with the
lexical and syntactic properties of the text.

4.1 Assigning Sentences to Formulae

For each sentence si and dependency tree ti, a hid-
den variable yi indicates the index of the formula
that generates the text. We can resample yi using
Gibbs sampling. In the non-parametric setting, yi

ranges over all non-negative integers; the Chinese
Restaurant Process formulation marginalizes the
infinite-dimensional parameter π, yielding a prior
based on the counts for each “active” formula (to
which at least one other sentence is assigned), and
a pseudo-count representing all non-active formu-
lae. Given K formulae, the prior on selecting for-
mula j is:

p(yi = j|y−i, π0) ∝
{

n−i(j) j < K

π0 j = K,
(3)

where y−i refers to the assignments of all y other
than yi and n−i refers to the counts over these as-
signments. Each j < K identifies an existing for-
mula in f , to which at least one other sentence is
assigned. When j = K, this means a new formula
f∗ must be generated.

To perform Gibbs sampling, we draw from the
posterior distribution over yi,

p(yi|si, tif , f∗,y−i, π0) ∝
p(yi|y−i, π0)p(si, ti|yi, f , f∗),

where the first term is the prior defined in Equa-
tion 3 and the latter term is the likelihood of gener-
ating the parsed sentence 〈si, ti〉 from the formula
indexed by yi.

To compute the probability of a parsed sentence
given a formula, we sum over alignments,

p(s, t|f) =
∑
at(f)

p(s, t,at(f)|f)

=
∑
at(f)

p(s|at(f))p(t,at(f)|f)

=
∑
at(f)

p(s|at(f))p(at(f)|t, f)p(t|f),

(4)

applying the chain rule and independence assump-
tions from the generative model. The result is a
product of three terms: the likelihood of the lexi-
cal items given the aligned predicates (defined in
Section 3.2; the likelihood of the alignment given
the dependency tree and formula (defined in equa-
tion 2), and the probability of the dependency tree
given the formula, which is uniform.

Equation 4 takes a sum across alignments, but
most of the probability mass of p(s|at(f)) will
be concentrated on alignments in which predicates
cover words that gloss them. Thus, we can apply
an approximation,

p(s, t|f) ≈
N∑

at(f)

p(s|at(f))p(at(f)|t, f)p(t|f),

(5)

in which we draw N samples in which predicates
are aligned to their glosses whenever possible.

Similarly, Equation 2 quantifies the likelihood
of an alignment only to a constant of proportional-
ity; again, a sum over possible alignments is nec-
essary. We do not expect the prior on alignments
to be strongly peaked like the sentence likelihood,
so we approximate the normalization term by sam-
pling M alignments at random and extrapolating:

p(at(f)|t, f) ∝ q(at(f); t)

=
q(at(f); t)∑

a′
t(f) q(a

′
t(f); t)

≈ #|a′t(f)|
M

q(at(f); t)∑M
a′

t(f) q(a
′
t(f); t)

,

where q(at(f); t) = exp{−score(at(f); t)}, de-
fined in Equation 2. In our experiments, we set N
to at most 10, and M = 20. Drawing larger num-
bers of samples had no discernible effect on sys-
tem output.

962



4.1.1 Generating new formulae
Chinese Restaurant Process sampling requires the
generation of new candidate formulae at each re-
sampling stage. To generate a new formula, we
first sample the number of literals. As described
in the generative story (Section 3), the number
of literals is drawn from a Poisson distribution
with parameter θ. We treat θ as unknown and
marginalize, using the Gamma hyperprior G(u, v).
Due to Poisson-Gamma conjugacy, this marginal-
ization can be performed analytically, yielding
a Negative-Binomial distribution with parameters
〈u+

∑
i #|fi|, (1+K+v)−1〉, where

∑
i #|fi| is

the sum of the number of literals in each formula,
and K is the number of formulae which generate
at least one sentence. In this sense, the hyperpriors
u and v act as pseudo counts. We set u = 3, v = 1,
reflecting a weak prior expectation of three literals
per predicate.

After drawing the size of the formula, the predi-
cates are selected from a uniform random distribu-
tion. Finally, the terms are assigned: at each slot,
we reuse a previous term with probability 0.5, un-
less none is available; otherwise a new term is gen-
erated.

4.2 Proposing changes to formulae

The assignment resampling procedure has the
ability to generate new formulae, thus exploring
the space of relational features. However, to ex-
plore this space more rapidly, we introduce four
Metropolis-Hastings moves that modify existing
formulae (Gilks, 1995): adding a literal, deleting
a literal, substituting a literal, and rearranging the
terms of the formula. For each proposed move, we
recompute the joint likelihood of the formula and
all aligned sentences. The move is stochastically
accepted based on the ratio of the joint likelihoods
of the new and old configurations, multiplied by a
Hastings correction.

The joint likelihood with respect to formula f
is computed as p(s, t, f) = p(f)

∏
i p(si, ti|f).

The prior on f considers only the number of liter-
als, using a Negative-Binomial distribution as de-
scribed in section 4.1.1. The likelihood p(si, ti|f)
is given in equation 4. The Hastings correction is
p̃(f ′ → f)/p̃(f → f ′), with p̃(f → f ′) indicat-
ing the probability of proposing a move from f
to f ′,and p̃(f ′ → f) indicating the probability of
proposing the reverse move. The Hastings correc-
tions depend on the arity of the predicates being
added and removed; the derivation is straightfor-
ward but tedious. We plan to release a technical
report with complete details.

4.3 Summary of inference
The final inference procedure iterates between
Gibbs sampling of assignments of formulae to
sentences, and manipulating the formulae through
Metropolis-Hastings moves. A full iteration com-
prises proposing a move to each formula, and then
using Gibbs sampling to reconsider all assign-
ments. If a formula no longer has any sentences
assigned to it, then it is dropped from the active
set, and can no longer be selected in Gibbs sam-
pling – this is standard in the Chinese Restaurant
Process.

Five separate Markov chains are maintained in
parallel. To allow the sampling procedure to con-
verge to a stationary distribution, each chain be-
gins with 100 iterations of “burn-in” sampling,
without storing the output. At this point, we per-
form another 100 iterations, storing the state at the
end of each iteration.2 All formulae are ranked ac-
cording to the cumulative number of sentences to
which they are assigned (across all five Markov
chains), aggregating the counts for multiple in-
stances of identical formulae. This yields a ranked
list of formulae which will be used in our frame-
work as features for relational learning.

5 Evaluation

Our experimental setup is designed to evaluate the
quality of the semantic abstraction performed by
our model. The logical formulae obtained by our
system are applied as features for relational learn-
ing of the rules of the game of Freecell solitaire.
We investigate whether these features enable bet-
ter generalization given varying number of train-
ing examples of Freecell game states. We also
quantify the specific role of syntax, lexical choice,
and feature expressivity in learning performance.
This section describes the details of this evalua-
tion.

5.1 Relational Learning
We perform relational learning using Inductive
Logic Programming (ILP), which constructs gen-
eralized rules by assembling smaller logical for-
mulae to explain observed propositional exam-
ples (Muggleton, 1995). The lowest level formu-
lae consist of basic sensors that describe the en-
vironment. ILP’s expressivity enables it to build
complex conjunctions of these building blocks,
but at the cost of tractability. Our evaluation asks
whether the logical formulae abstracted from text

2Sampling for more iterations was not found to affect per-
formance on development data, and the model likelihood ap-
peared stationary after 100 iterations.
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Predicate Glosses
card(x) card
tableau(x) column, tableau
freecell(x) freecell, cell
homecell(x) foundation, cell, homecell
value(x,y) ace, king, rank, 8, 3, 7, lowest,

highest
successor(x,y) higher, sequence, sequential
color(x,y) black, red, color
suit(x,y) suit, club, diamond, spade,

heart
on(x,y) onto
top(x,y) bottom, available, top
empty(x) empty

Table 1: Predicates in the Freecell world model,
with natural language glosses obtained from the
development set text.

can transform the representation to facilitate learn-
ing. We compare against both the sensor-level rep-
resentation as well as richer representations that do
not benefit from the full power of our model’s se-
mantic analysis.

The ALEPH3 ILP system, which is primarily
based on PROGOL (Muggleton, 1995), was used
to induce the rules of game. The search parame-
ters remained constant for all experiments.

5.2 Resources
There are four types of resources required to work
in the reading-to-learn setting: a world model, in-
structional text, a small set of glosses that map
from text to elements of the world model, and la-
beled examples of correct and incorrect actions
in the world. In our experiments, we consider
the domain of Freecell solitaire, a popular card
game (Morehead and Mott-Smith, 1983) in which
cards are moved between various types of loca-
tions, depending on their suit and rank. We now
describe the resources for the Freecell domain in
more detail.

World Model Freecell solitaire can be described
formally using first order logic; we consider a
slightly modified version of the representation
from the Planning Domain Definition Language
(PDDL), which is used in automatic game-playing
competitions. Specifically, there are 87 constants:
52 cards, 16 locations, 13 values, four suits, and
two colors. These constants are combined with a
fixed set of 11 predicates, listed in Table 1.

Instructional Text Our approach relies on text
that describes how to operate in the Freecell soli-
taire domain. A total of five instruction sets were

3Freely available from http://www.comlab.ox.
ac.uk/activities/machinelearning/Aleph/

obtained from the Internet. Due to the popular-
ity of the Microsoft implementation of Freecell,
instructions often contain information specific to
playing Freecell on a computer. We manually re-
moved sentences which did not focus on the card
aspects of Freecell (e.g., how to set up the board
and information regarding where to click to move
cards). In order to use our semantic abstraction
model, the instructions were part-of-speech tagged
with the Stanford POS Tagger (Toutanova and
Manning, 2000) and dependency parses were ob-
tained using Malt (Nivre, 2006).

Glosses Our reading to learn setting requires a
small set of glosses, which are surface forms com-
monly used to represent predicates from the world
model. We envision an application scenario in
which a designer manually specifies a few glosses
for each predicate. However, for the purposes of
evaluation, it would be unprincipled for the exper-
imenters to handcraft the ideal set of glosses. In-
stead, we gathered a development set of text and
annotated the lexical mentions of the world model
predicates in text. This annotation is used to ob-
tain glosses to apply to the evaluation text. This
approximates a scenario in which the designer has
a reasonable idea of how the domain will be de-
scribed in text, but no prior knowledge of the spe-
cific details of the text instructions. Our exper-
iments used glosses that occurred two or more
times in the instructions: this yields a total of 32
glosses for 11 predicates, as shown in Table 1.

Evaluation game data Ultimately, the seman-
tic abstraction obtained from the text is applied
to learning on labeled examples of correct and
incorrect actions in the world model. For evalu-
ation, we automatically generated a set of move
scenarios: game states with one positive example
(a legal move) and one negative example (an ille-
gal move). To avoid bias in the data we generate
an equal number of move scenarios from each of
three types: moves to the freecells, homecells, and
tableaux. For our experiments we vary the number
of move scenarios in the training set; the develop-
ment and test sets consist of 900 and 1500 move
scenarios respectively.

5.3 Evaluation Settings

We compare four different feature sets, which
will be provided to the ALEPH ILP learner. All
feature sets include the sensor-level predicates
shown in Table 1. The FULL-MODEL feature
set also includes the top logical formulae ob-
tained in our model’s semantic abstract (see Sec-
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tion 4.3). The NO-SYNTAX feature set is obtained
from a variant of our model in which the in-
fluence of syntax is removed by setting parame-
ters α, β = 0. The SENSORS-ONLY feature set
uses only the sensor-level predicates. Finally, the
RELATIONAL-RANDOM feature set is constructed
by replacing each feature in the FULL-MODEL set
with a randomly generated relational feature of
identical expressivity (each predicate is replaced
by a randomly chosen alternative with identical
arity; terms are also assigned randomly). This en-
sures that any performance gains obtained by our
model were not due merely to the greater expres-
sivity of its relational features. The number of fea-
tures included in each scenario is tuned on a de-
velopment set of test examples.

The performance metric assesses the ability
of the ILP learner to classify proposed Freecell
moves as legal or illegal. As the evaluation set
contains an equal number of positive and negative
examples, accuracy is the appropriate metric. The
training scenarios are randomly generated; we re-
peat each run 50 times and average our results. For
the RELATIONAL-RANDOM feature set – in which
predicates and terms are chosen randomly – we
also regenerate the formulae per run.

6 Results

Table 2 shows a comparison of the results
using the setup described above. Our FULL-
MODEL achieves the best performance at ev-
ery training set size, consistently outperforming
the SENSORS-ONLY representation by an abso-
lute difference of three to four percent. This
demonstrates the semantic abstract obtained by
our model does indeed facilitate machine learning
in this domain.

RELATIONAL-RANDOM provides a baseline of
relational features with equal expressivity to those
chosen by our model, but with the predicates and
terms selected randomly. We consistently outper-
form this baseline, demonstrate that the improve-
ment obtained over the sensors only representation
is not due merely to the added expressivity of our
features.

The third row compares against NO-SYNTAX,
a crippled version of our model that incorpo-
rates lexical features but not the syntactic struc-
ture. The results are stronger than the SENSORS-
ONLY and RELATIONAL-RANDOM baselines, but
still weaker than our full system. This demon-
strates the syntactic features incorporated by our
model result in better semantic representations of
the underlying text.

Features Number of training scenarios
15 30 60 120

SENSORS-ONLY 79.12 88.07 92.77 93.73
RELATIONAL-RANDOM 82.72 89.14 93.08 94.17
NO-SYNTAX 80.98 89.79 94.11 97.04
FULL-MODEL 82.89 91.00 95.23 97.45

Table 2: Results as number of training examples
varied. Each value represents the accuracy of the
induced rules obtained with the given feature set.

card(x1) ∧ tableau(x2)
card(x1) ∧ freecell(x2)
homecell(x1) ∧ value(x2,x3)
empty(x1) ∧ freecell(x1)
card(x1) ∧ top(x1,x2)
card(x1) ∧ homecell(x2)
freecell(x1) ∧ homecell(x2)
card(x1) ∧ tableau(x1)
card(x1) ∧ top(x2,x1)
homecell(x1)
card(x1) ∧ homecell(x1)
color(x1,x2) ∧ value(x3,x4)
suit(x1,x2) ∧ value(x3,x4)
value(x1,x2) ∧ value(x3,x4)
homecell(x1) ∧ successor(x2,x3)

Figure 3: The top 15 features recovered by the se-
mantic abstraction of our full model.

Figure 3 shows the top 15 formulae recovered
by the full model running on the evaluation text.
Features such as empty(x1) ∧ freecell(x1)
are useful because they reuse variables to ensure
that objects have key properties – in this case, en-
suring that a freecell is empty. Other features, such
as homecell(x1) ∧ value(x2, x3), help to fo-
cus the search on useful conjunctions of predicates
(in Freecell, the legality of playing a card on a
homecell depends on the value of the card). Note
that three of these 15 formulae are trivially use-
less, in that they are always false: e.g., card(x1)
∧ tableau(x1). This illustrates the importance
of term assignment in obtaining useful features
for learning. In the NO-SYNTAX system, which
ignores the relationship between term assignment
and syntactic structure, eight of the top 15 formu-
lae were trivially useless due to term incompatibil-
ity.

7 Related Work

This paper draws on recent literature on extract-
ing logical forms from surface text (Zettlemoyer
and Collins, 2005; Ge and Mooney, 2005; Downey
et al., 2005; Liang et al., 2009), interpreting lan-
guage in the context of a domain (Chen and
Mooney, 2008), and using an actionable domain
to guide text interpretation (Branavan et al., 2009).
We differentiate our research in several dimen-
sions:
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Language Interpretation Instructional text de-
scribes generalized statements about entities in
the domain and the way they interact, thus the
text does not correspond directly to concrete sen-
sory inputs in the world (i.e., a specific world
state). Our interpretation captures these general-
izations as first-order logic statements that can be
evaluated given a specific state. This contrasts to
previous work which interprets “directions” and
thus assumes a direct correspondence between text
and world state (Branavan et al., 2009; Chen and
Mooney, 2008).

Supervision Our work avoids supervision in the
form of labeled examples, using only a minimal
set of natural language glosses per predicate. Pre-
vious work also considered the supervision signal
obtained by interpreting natural language in the
context of a formal domain. Branavan et al. (2009)
use feedback from a world model as a supervi-
sion signal. Chen and Mooney (2008) use tempo-
ral alignment of text and grounded descriptions of
the world state. In these approaches, concrete do-
main entities are grounded in language interpreta-
tion, and therefore require only a propositional se-
mantic representation. Previous approaches for in-
terpreting generalized natural language statements
are trained from labeled examples (Zettlemoyer
and Collins, 2005; Lu et al., 2008).

Level of analysis We aim for an abstractive
semantic summary across multiple documents,
whereas other approaches attempt to produce log-
ical forms for individual sentences (Zettlemoyer
and Collins, 2005; Ge and Mooney, 2005). We
avoid the requirement that each sentence have a
meaningful interpretation within the domain, al-
lowing us to handle relatively unstructured text.

Evaluation We do not evaluate the representa-
tions obtained by our model; rather we assess
whether these representations improve learning
performance. This is similar to work on Geo-
Query (Wong and Mooney, 2007; Ge and Mooney,
2005), and also to recent work on following step-
by-step directions (Branavan et al., 2009). While
these evaluations are performed on the basis of in-
dividual sentences, actions, or system responses,
we evaluate the holistic semantic analysis obtained
by our system.

Model We treat surface text as generated from a
latent semantic description. Lu et al. (2008) ap-
ply a generative model, but require a complete
derivation from semantics to the lexical represen-
tation, while we favor a more flexible semantic

analysis that can be learned without annotation
and applied to noisy text. More similar is the work
of Liang et al. (2009), which models the gener-
ation of semantically-relevant fields using lexical
and discourse features. Our approach differs by
accounting for syntax, which enables a more ex-
pressive semantic representation that includes un-
grounded variables.
Relational learning The output of our semantic
analysis is applied to learning in a structured rela-
tional space, using ILP. A key difficulty with ILP
is that the increased expressivity dramatically ex-
pands the hypothesis space, and it is widely agreed
that some learning bias is required for ILP to be
tractable (Nédellec et al., 1996; Cumby and Roth,
2003). Our work can be viewed as a new method
for acquiring such bias from text; moreover, our
approach is not specialized for ILP and may be
used to transform the feature space in other forms
of relational learning as well (Roth and Yih, 2001;
Cumby and Roth, 2003; Richardson and Domin-
gos, 2006).

8 Conclusion
This paper demonstrates a new setting for seman-
tic analysis, which we term reading to learn. We
handle text which describes the world in gen-
eral terms rather than refereing to concrete enti-
ties in the domain. We obtain a semantic abstract
of multiple documents, using a novel, minimally-
supervised generative model that accounts for both
syntax and lexical choice. The semantic abstract
is represented as a set of predicate logic formu-
lae, which are applied as higher-order features for
learning. We demonstrate that these features im-
prove learning performance, and that both the lex-
ical and syntactic aspects of our model yield sub-
stantial contributions.

In the current setup, we produce an “overgener-
ated” semantic representation comprised of useful
features for learning but also some false positives.
Learning in our system can be seen as the process
of pruning this representation by selecting useful
formulae based on interaction with the training
data. In the future we hope to explore ways to in-
terleave semantic analysis with exploration of the
learning domain, by using the environment as a
supervision signal for linguistic analysis.
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