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Abstract

Sentence compression holds promise for
many applications ranging from summarisa-
tion to subtitle generation. The task is typi-
cally performed on isolated sentences with-
out taking the surrounding context into ac-
count, even though most applications would
operate over entire documents. In this pa-
per we present a discourse informed model
which is capable of producing document
compressions that are coherent and informa-
tive. Our model is inspired by theories of
local coherence and formulated within the
framework of Integer Linear Programming.
Experimental results show significant im-
provements over a state-of-the-art discourse
agnostic approach.

Introduction

, mlap@inf.ed.ac.uk

used verbatim due to the rate of speech being too
high (Vandeghinste and Pan 2004). Other applica-
tions include compressing text to be displayed on
small screens (Corston-Oliver 2001) such as mobile
phones or PDAs, and producing audio scanning de-
vices for the blind (Grefenstette 1998).

Most work to date has focused on a rather sim-
ple formulation of sentence compression that does
not allow any rewriting operations, besides word re-
moval. Moreover, compression is performed on iso-
lated sentences without taking into account their sur-
rounding context. An advantage of this simple view
is that it renders sentence compression amenable to
a variety of learning paradigms ranging from in-
stantiations of the noisy-channel model (Galley and
McKeown 2007; Knight and Marcu 2002; Turner
and Charniak 2005) to Integer Linear Programming
(Clarke and Lapata 2006a) and large-margin online
learning (McDonald 2006).

The computational treatment of sentence compres- N this paper we take a closer look at one of
sion has recently attracted much attention in thE'e simplifications associated with the compression
literature. The task can be viewed as producing task, namely that sentence reduction can be realised
summary of a single sentence that retains the mo& isolation without making use of discourse-level
important information and remains grammaticallynformation. This is clearly not true — professional
correct (Jing 2000). Sentence compression is corfbstracters often rely on contextual cues while creat-

monly expressed as a word deletion problem: givetfd Summaries (Endres-Niggemeyer 1998). Further-
an input sentence of word§/ — Wy, Wa, .., Wy, the More, determining what information is important in
) ) L)

aim is to produce a compression by removing an

subset of these words (Knight and Marcu 2002). > -
Sentence compression can potentially benefignce introduces new entities or events that have not

many applications. For example, in summarisatiorpeen mentioned before, and the reader’s background
a compression mechanism could improve the corknowledge.
ciseness of the generated summaries (Jing 2000;The simplification is also at odds with most appli-

? sentence is influenced by a variety of contextual
actors such as the discourse topic, whether the sen-

Lin 2003). Sentence compression could be alscations of sentence compression which aim to cre-
used to automatically generate subtitles for teleate a shorter document rather than a single sentence.
vision programs; the transcripts cannot usually b&he resulting document must not only be grammat-



ical but also coherent if it is to function as a re-models learn either which constituents to delete or
placement for the original. However, this cannot bevhich words to place adjacently in the compression
guaranteed without knowing how the discourse prosutput. Relatively few approaches dispense with the
gresses from sentence to sentence. To give a simarallel corpus and generate compressions in an un-
example, a contextually aware compression systesupervised manner using either a scoring function
could drop a word or phrase from the current sen(Clarke and Lapata 2006a; Hori and Furui 2004) or
tence, simply because it is not mentioned anywhemmpression rules that are approximated from a non-
else in the document and is therefore deemed unimarallel corpus such as the Penn Treebank (Turner
portant. Or it could decide to retain it for the sake ofand Charniak 2005).
topic continuity. Our work differs from previous approaches in two
We are interested in creating a compression mod&ey respects. First, we present a compression model
that is appropriate for documents and sentences. Tioat is contextually aware; decisions on whether to
this end, we assess whether discourse-level informeemove or retain a word (or phrase) are informed by
tion is helpful. Our analysis is informed by two pop-its discourse properties (e.g., whether it introduces a
ular models of discourse, Centering Theory (Grospew topic, whether it is semantically related to the
et al. 1995) and lexical chains (Morris and Hirstprevious sentence). Second, we apply our compres-
1991). Both approaches modekal coherence— sion model to entire documents rather than isolated
the way adjacent sentences bind together to formsentences. This is more in the spirit of real-world ap-
larger discourse. Our compression model is an eylications where the goal is to generate a condensed
tension of the integer programming formulation pro-and coherent text. Previous work on summarisation
posed by Clarke and Lapata (2006a). Their approadfas also utilised discourse information (e.g., Barzi-
is conceptually simple: it consists of a scoring funclay and Elhadad 1997; Daumé IlIl and Marcu 2002;
tion coupled with a small number of syntactic andMarcu 2000; Teufel and Moens 2002). However, its
semantic constraints. Discourse-related informatioapplication to document compression is novel to our
can be easily incorporated in the form of additionaknowledge.
constraints. We employ our model to perform sen-
tence compression throughout a whole docume@ Discourse Representation

(by compressing sentences sequentially) and evalu- . . _ : .
ate whether the resulting text is understandable arffdPt@ining an appropriate representation of discourse

informative using a question-answering task. oufS the first step towards creating a compression
method yields significant improvements over a dis[nodel that exploits contextual information. In this
course agnostic state-of-the-art compression mod¥P'k we focus on the role of local coherence as

(McDonald 2006) this is prerequisite for maintaining global coherence.
' Ideally, we would like our compressed document to
2 Related Work maintain the discourse flow of the original. For this

reason, we automatically annotate the source docu-

Sentence compression has been extensively stUB€Nt with discourse_—level information whiph is sub-
ied across different modelling paradigms and hageduently used to inform our compression proce-
received both generative and discriminative formudure. We first describe our algorithms for obtaining
lations. Most generative approaches (Galley angg_lscourse annotations and then present our compres-
McKeown 2007; Knight and Marcu 2002; TurnerSion model.

and Charniak 2005) are instantiations of the noisy-
channel model, whereas discriminative formulationg"
include decision-tree learning (Knight and MarcuCentering Theory (Grosz et al. 1995) is an entity-
2002), maximum entropy (Riezler et al. 2003)orientated theory of local coherence and salience.
support vector machines (Nguyen et al. 2004)Although an utterance in discourse may contain sev-
and large-margin learning (McDonald 2006). Theseral entities, it is assumed thatsingle entityis
models are trained on a parallel corpus of longalient or “centered”, thereby representing the cur-
sourcesentences and theamrget compressions. Us- rent focus. One of the main claims underlying cen-
ing a rich feature set derived from parse trees, thiering is that discourse segments in which succes-

1 Centering Theory



sive utterances contain common centers are morel. Extract entities front;.
coherent than segments where the center repeatedlp. Create C;(U;) by ranking the entities in

changes. U; according to their grammatical role
Each utteranc&J; in a discourse segment has a  (subjects> objects> others).

list of forward-looking centersCt(U;) and aunique 3. Find the highest ranked entity i6¢(Uj_1)
backward-looking centeCy(U;). C (U;) represents which occurs inCs(U;), set the entity to

a ranking of the entities invoked BYy; according beCp(U;).

to their salience. Th&, of the current utterance _ .
Ui, is the highest-ranked element@(U;_;) that is The above proc_edure qul_ves several automatic
also inU;. TheC, thus linksU; to the previous dis- Steps (named entity recognition, coreference reso-

fromU;_;. unavoidably produce some noisy annotations. So,

there is no guarantee that the righy will be iden-
Centering Algorithm  So far we have presentedtified or that all sentences will be marked witiCa
centering without explicitly stating how the con-The latter situation also occurs in passages that con-
cepts “utterance”, “entities” and “ranking” are in- tain abrupt changes in topic. In such cases, none of
stantiated. A great deal of research has been devotg® entities realised it; will occur in Ct (Ui_1).
into fleshing these out and many different instantiaRather than accept that discourse information may
tions have been developed in the literature (see Poge absent in a sentence, we turn to lexical chains
sio et al. 2004 for details). Since our aim is to idengs an alternative means of capturing topical content
tify centers in discourse automatically, our paramwithin a document.
eter choice is driven by two considerations, robust-

ness and ease of computation. 3.2 Lexical Chains

We therefore follow previous work (e.g., M"t'ok,exical cohesion refers to the degree of semantic re-

sakaki and Kukich 2000) in assuming that the unit o .
i ) . lf';rl]tedness observed among lexical items in a docu-
an utterance is the sentence (i.e., a main clause wi

accompanving subordinate and adiunct clause rgent. The term was coined by Halliday and Hasan
companying . ) . S( 976) who observed that coherent documents tend
This is in line with our compression task which alsq

) : to have more related terms or phrases than inco-
operates over sentences. We determine which

e oo :
L X . erent ones. A number of linguistic devices can be
tities are invoked by a sentence using two meth-

. o .. . used to signal cohesion; these range from repeti-
ods. First, we perform named entity identification,. i
.tion, to synonymy, hyponymy and meronymy. Lexi-

and coreference resolution on each document using ; ; . .
. . . : | chains are a representation of lexical cohesion as
LingPipée', a publicly available system. Named en-

tities and all remaining nouns are added to Ge sequences of semantically related words (Morris and

list. Entity matching between sentences is require'c_zl| Irst 1991) and provide a useful means for describ-

. . . ~Ing the topic flow in discourse. For instance, a docu-
to determine th€;, of a sentence. This is done using . . : . .
. . . e . ment with many different lexical chains will prob-
the named entity’s unique identifier (as provided b

. . s . %\bly contain several topics. And main topics will
LingPipe) or by the entity’s surface form in the cas )
" " end to be represented by dense and long chains.
of nouns not classified as named entities.

Entities are ranked according to their grammaticaYvOrds part|C|pat|ng in such chains are important for
roles; subjects are ranked more highly than ob'ectg ur compression task — they reveal what the docu-

>S, SUDJ . gty JeC ent is about — and in all likelihood should not be
which are in turn ranked higher than other gramma

t-
ical roles (Grosz et al. 1995); ties are broken usingeleted'

left-to-right ordering of the gram_mati(_:al roles in theLexicaI Chains Algorithm  Barzilay and Elhadad
sentence (Tetreault 2001). We identify grammaticgh 997y describe a technique for text summarisation
roles with RASP (Briscoe and Carroll 2002). For-y,5ed on lexical chains. Their algorithm uses Word-
mally, our centering algorithm is as follows (wherenet 1o build chains of nouns (and noun compounds).
Ui corresponds to sentenge These are ranked heuristically by a score based on
lLingPipe can be downloaded fromhttp:/uww. their length and homogeneity. A summary is then
alias-i.com/lingpipe/ ) produced by extracting sentences corresponding to



strong chainsi.e., chains whose score is two stant Bad weatheﬁ dashed hopes of attempts to halt
dard deviations above the average score. the during what was seen as a Iull n

Like Barzilay and Elhadad (1997), we wish to ,
determine which lexical chains indicate the mostthe lava's| momentum. Experts say that even
prevalent discourse topics. Our assumption is thaif the eruption stoppe, the pressure of

terms belonging to these chains are indicative of thef, : ; e
ava|| piled up behind for six miles;| would
document’s main focus and should therefore be r ‘ ‘ P P

tained in the compressed output. Barzilay and EJ-Pring cascading down on to tteown
hadad’s scoring function aims to identify sentencesanyway. Some estimate the volcano is pouring put
(for inclusion in a summary) that have a high cont one million tons of debris| a(day, }, at a(rate; |

centratior_1 of chgin members. In contrast, we are ir] “of 15 ft3 | per{second), from a fissure that opene
terested in chains that span several sentences. Wa \5-Decermber

thus score chains according to the number of sen- .
tences their terms occur in. For example, the cha n;he Ita_I:ar;grorg d;a'I[Eotnat,ed |400|b of
{house, home, loft;, house} (where word, de- ynamite s, eet up viount EInass Slopes.

notesword occurring in sentencg would be given  giqre 1: Excerpt of document from our test set with
a score of two as the terms only occur in two SeNgiscourse annotations. Centers are in double boxes:
tences. We assume that a chain signals a prevalggims occurring in lexical chains are in oval boxes.
discourse topic if it occurs throughout more senyyqrqs with the same subscript are members of the

tences than the average chain. The scoring algorithgy me chain (e.gtoday, day, secondyesterday
is outlined more formally below: ’

%

o

1. Compute the lexical chains for the document. .. . .
tion. The latter is essentially a language model cou-

2. S(_:orQCham)_: _Sentence@ham). pled with a few constraints ensuring that the re-
3. Discard chains |Score(Cha_|n) < AV9<S°°“3- . sulting output is grammatical. The language model
4. Markterms from the remaining chains as beingy the constraints are encoded as linear inequal-
the focus of the document. ities whose solution is found using Integer Linear
We use the method of Galley and McKeown (2003Programming (ILP, Vanderbei 2001; Winston and
to compute lexical chains for each documéfthis  Venkataramanan 2003). Besides sentence compres-
is an improved version of Barzilay and Elhadad'ssion, the ILP modelling framework has been applied
(1997) original algorithm. to a wide range of natural language processing tasks,
Before compression takes place, all documeniscluding reluctant paraphrasing (Dras 1997), rela-
are pre-processed using the centering and lexicabn extraction (Roth and Yih 2004), semantic role
chain algorithms described above. In each sententabelling (Punyakanok et al. 2004), concept-to-text
we mark the cente€,(U;) if one exists. Words (or generation (Barzilay and Lapata 2006; Marciniak
phrases) that are present in the current sentence aanfl Strube 2005), dependency parsing (Riedel and
function as the center in the next sente@péJ; 1) Clarke 2006), and coreference resolution (Denis and
are also flagged. Finally, words are marked if theyaldridge 2007).
are part of a prevalent chain. An example of our dis- We selected this model for several reasons. First

course annotation is given in Figure 1. it does not require a parallel corpus and thus can be
ported across domains and text genres, whilst de-
4 The Compression Model livering state-of-the-art results (see Clarke and La-

. . Ipata 2006a for details). Second, discourse-level in-
Ourdmod?l 'E an 3xtenS|on of the apErqach T(Ut f?(1"ormation can be easily incorporated by augment-
ward in Clarke an Lapa_ta (2006a). T \eir wor tac ing the constraint set. This is not the case for other
les sentence compression as an optimisation proj:- proaches (e.g., those based on the noisy channel
lem. Given a long sentence, a compression is formeg ye|) \where compression is modelled by gram-
by retaining the words that maximise a scoring funcq, - 1les indicating which constituents to delete in a
2The software is available fromhttp:/fwwwl.cs. syntactic context. Thirq, the ILP framework delivers
columbia.edu/galley/ ) a globally optimal solution by searching over the en-



tire compression spatavithout employing heuris- A set of sequentialconstraint$ are added to the

tics or approximations during decoding. problem to only allow results which combine valid
We begin by recapping the formulation of Clarketrigrams.

and Lapata (2006a). L& = wy,wW», ..., W, denote L

a sentence for which we wish to generate a conftl Significance Score

pression. A set of binary decision variables repreThe significance score is an attempt at capturing the

sent whether each wokgl should be included in the gist of a sentence. It gives more weight to content

compression or not. Let: words that appear in the deepest level of embed-

ding in the syntactic tree representing the source

nﬂ € [l, .. n] sentence:

| 1 ifwisinthe compressio
Y'=1 0 otherwise

I(Wi)zlﬁ-fﬂog% (3)
A trigram language model forms the backbone of _ :
the compression model. The language model is fof-N€ Score is computed over a large corpus whgre
mulated as an integer program with the introductiof$ & content word (i.e., a noun or verti),andF; are

of extra decision variables indicating whickord  the frequencies ow; in the document and corpus

compression. Let: in the corpusl is the number of clause constituents

abovew;, andN is the deepest level of embedding.
4.2 Sentential Constraints

The model also contains a small number of
sentence-level constraints. Their aim is to preserve

|1 if w; starts the compressi
' {O otherwise Ve 2.

1 if sequencev;, w; ends

Gij = { the compression vie[l..n—1 the meaning and structure of the original sentence
0 otherwise vieli+l...n as much as possible. The majority of constraints
1 if sequencav;,wj,wi Vi € [1...n—2] revolve around m_odification and argument struc-

Xijk = is in the compressioj e [i+1...n—1] ture and are defined over parse trees or gram-
0 otherwise vke[j+1...n matical relations. For example, the following con-

The objective function is expressed in Equa_stramt template disallows the inclusion of modifiers

tion (1). It is the sum of all possible trigrams mul_(e.g., nouns, adjectives) without their head words:
tiplied by the appropriate decision variable. The ob- yi—Yj >0 (4)
jective function also includes a significance score for
each word multiplied by the decision variable for
that word (see the last summation term in (1)). Thi©ther constraints force the presence of modifiers
score highlights important content words in a senwhen the head is retained in the compression. This
tence and is defined in Section 4.1. way, it is ensured that negation will be preserved in
the compressed output:

Vi, j : wj modifiesw

n
maxz = pi - P(wi|star
i; - Plvaistan Yi—yj=0 (5)
n-2n-1 n Vi, j - wj modifiesw; A wj = not

T2 2 2 ik Pwwiw) .
i=1 j=TF1k=]+1 Argument structure constraints make sure that

n-1 n the resulting compression has a canonical argument
- 20 > aj-P(endwi, wj) structure. For instance a constraint ensures that if a
=0 j=1+1 verb is present in the compression then so are its ar-
0 uments:
3 yetm) @ °
= V-Yi=0 (8

subject to: Vi, j : w; € subject/object of veriw;

Yi> Pi, Gij, Xijk =0orl 2 — _ _ o
- “We have omitted sequential constraints due to space limi-
3For a sentence of length there are 2 compressions. tations. The full details are given in Clarke and Lapata 6200



Finally, Clarke and Lapata (2006a) propose onef the original and will preserve terms indicative
discourse constraint which forces the system to pref important topics. We argue that these constraints
serve personal pronouns in the compressed outputwill additionally benefit sentence-level compres-

sion, as words which are not signalled as discourse
yi=1 (7)  relevant can be dropped.
Vi:w; € personal pronouns

4.3 Discourse Constraints 4.4  Applying the Constraints

In addition to the constraints described above, our

model includes constraints relating to the centerin§ur compression system is given a (sentence sepa-
and lexical chains representations discussed in Se¢@ted) document as input. The ILP model just pre-
tion 3. Recall that after some pre-processing, eadiented is then applied sequentially to all sentences
sentence is marked with: its own cen@y(U;), the to generate a compressed version of the original. We
center Cp(Uj, 1) of the sentence following it and thus create and solve an ILP for every sentehbe.
words that are members of high scoring chains cothe formulation of Clarke and Lapata (2006a) a sig-
responding to the document’s focus. We introduc@ificance score (see Section 4.1) highlights which

two new types of constraints based on these addouns and verbs to include in the compression. As
tional knowledge sources. far as nouns are concerned, our discourse constraints

The first constraint is the centering constrainperform a similar task. Thus, when a sentence con-
which operates over adjacent sentences. It ensur@ns discourse annotations, we are inclined to trust
that theC, identified in the source sentence is rethem more and only calculate the significance score
tained in the target compression. If present, the efor verbs.

t|ty realised as th@b in the fO”OWing sentence iS During development |t was Observed that apply-

also retained: ing all discourse constraints simultaneously (see
Equations (7)—(9)) results in relatively long com-

yi=1 (8) pressions. To counter this, we employ these con-

Vi tw; € {Cp(Ui),Cp(Vita)} straints using a back-off strategy that relies on pro-

) ) o gressively less reliable information. Our back-off
Consider for example the discourse in Figure 1. Thg,oqe| works as follows: if centering information is

constraints ge_nerated frc_)m Equation_ (8) will requin?)resem’ we apply the appropriate constraints (Equa-
the compression to retailava in the first two sen- tjon (8)). If no centers are present, we back-off to the
tences andlebrisin sentences two and thrée. |gyi0a| chain information using Equation (9), and in
We also add a lexical chain constraint. This apge ghsence of the latter we back-off to the pronoun
plies only to nouns which are members of prevalentongiraint (Equation (7). Finally, if discourse infor-
chains: mation is entirely absent from the sentence, we de-
yi=1 ) fault to the significance score. Sentential constraints
_ e _ (see Section 4.2) are applied throughout irrespec-
Vi:w; € document focus lexical chain tively of discourse constraints. In our test data (see

Section 5 for details), the centering constraint was

This co_nstraint s complementa_ry to the centerin%sed in 68.6% of the sentences. The model backed
constr_amt; the sentence_s_ it applies to dq not have B?f to lexical chains for 13.7% of the test sentences,
be adjacent and the entities under consideration ar ereas the pronoun constraint was applied in 8.5%.

_not restric_ted oa spec_ific syntactic role (e.g., SUbIfinally the noun and verb significance score was
ject or object). See for instance the woriav and used on the remaining 9.2%. An example of our sys-

rate in Figure 1 which are members of the samg, ., O . -
: . . . output for the text in F 1 en in Fig-
chain (marked with subscript one). According touerms HiputTor extiniigure Lis gvenin Fig

constraint (9) both words must be included in the '
compressed document.

The constraints just O!eSC”PEd ens_ure that the 5We use the publicly availablgp_solve solver ittp:/
compressed document will retain the discourse flowww.geocities.com/lpsolve/ ).



Bad weather dashed hopes to halt the flow dutingnot utilise a parallel corpus and has only a few con-
what was seen as lull in lava’s momentum. EXx- straints. The comparison of the two systems allows
perts say that even if eruption stopped, the pres-us to investigate whether discourse information is re-

sure of lava piled would bring debris cascading. dundant when using a powerful sentence compres-
Some estimate volcano is pouring million tons|of sion model.

debris from fissure opened in mid-December. The

Army yesterday detonated 400Ib of dynamite. C_OVPUS Previous work on sentence compres-
sion has used almost exclusively the Ziff-Davis,

Figure 2: System output on excerpt from Figure 1.a compression corpus derived automatically from
document-abstract pairs (Knight and Marcu 2002).
Unfortunately, this corpus is not suitable for our
purposes since it consists of isolated sentences. We

In this section we present our experimental set-upus created a document-based compression corpus
We briefly introduce the model used for comparnanually. Following Clarke and Lapata (2006a), we
ison with our approach and give details regardingSk€d annotators to produce compressions for 82
our compression corpus and parameter estimatiopiofies (1,629 sentences) from the BNC and the LA

Finally, we describe our evaluation methodology. 1'mes Washington Po§t_.4$ documents (962 sen-
tences) were used for training, 3 for development (63

Comparison with state-of-the-art An obvious sentences), and 31 for testing (604 sentences).
evaluation experiment would involve comparing L

the ILP model without any discourse constraint? arameter Estimation Our parameters for the
against the discourse informed model presented| P model followed closely Clarke and I__apata
this work. Unfortunately, the two models obtain 2006_a). We used a language mode! trained on
markedly different compression rafeshich ren- 25 million toke_ns _ffom the North American News
ders the comparison of their outputs problematic. TEOMPUS. The significance score was based on 25
put the comparison on an equal footing, we evaIL{-nIlllon tOKenS from the same corpus. Ol.” re-
ated our approach against a state-of-the-art modlgllplementatlon of McDonald (2006) used an identi-

that achieves a compression rate similar to our%al feature set, and a slightly modified loss function
without taking discourse-level information into ac-{0 encourage compression on our date’set.

count. McDonald (2006) formalises sentence COMeyajuation Previous studies evaluate how well-
pression in a discriminative large-margin leamingsrmed the automatically derived compressions are
framework as a classification task: pairs of wordg,;t of context. The target sentences are typi-
from the source sentence are classifie(_j as being agdg”y rated by naive subjects on two dimensions,
jacent or not in the target compression. A larggyrammaticality and importance (Knight and Marcu
number of features are defined over words, partsnp2), Automatic evaluation measures have also
of speech, phrase structure trees and dependefisen proposed. Riezler et al. (2003) compare the
cies. These are gathered over adjacent words in thes mmatical relations found in the system output
compression and the words in-between which werggainst those found in a gold standard using F-score
dropped. which Clarke and Lapata (2006b) show correlates
Itis important to note that McDonald (2006) is NOtreliably with human judgements.
a straw-man system. It achieves highly competitive Following previous work, sentence-based com-
performance compared with Knight and Marcu'syressions were evaluated automatically using F-
(2002) noisy channel and decision tree models. Dugore computed over grammatical relations which
to its discriminative nature, th(_a- model is able 10 USQe obtained by RASP (Briscoe and Carroll 2002).
a large feature set and to optimise compression aggsides individual sentences, our goal was to evalu-

curacy directly. In other words, McDonald's modelate the compressed document as whole. Our evalu-
has a head start against our own model which does
- "The corpus is available frorhttp:/homepages.inf.

6The discourse agnostic ILP model has a compression ragg.ac.uk/so460084/data/
of 81.2%; when discourse constraints are include the rafesdr 8McDonald’s (2006) results are reported on the Ziff-Davis
to 65.4%. corpus.

5 Experimental Set-up



What is posing a threat to the town? (lava) Model CompR| F-Score
What hindered attempts to stop the lava flow? McDonald 60.1% | 36.09%
(bad weather) Discourse ILP| 65.4% | 39.6%
What did the Army do first to stop the lava flow Gold Standard 70.3% —_—
(detonate explosives)

~J

Table 1. Compression results: compression rate and
Figure 3: Example questions with answer key. relation-based F-scor€; sig. diff. from Discourse
ILP (p < 0.05 using the Studenttest).

ation methodology was motivated by two questions:

(1) are the documents readable? and (2) how much Model Readability| Q&A
key information is preserved between the source McDonald 2.6" 53.7%T
document and its target compression? We assume | Discourse ILP 3.0¢ 68.3%
here that the compressed document is to function as | Gold Standard 5.5 80.7%

a replacement for the original. We can thus measure
the extent to which the compressed version can beable 2: Human Evaluation Results: average read-
used to find answers for questions which are deriveapility ratings and average percentage of questions
from the original and represent its core content. ~ answered correctly. sig. diff. from Gold Standard;

. -t sia di i
We therefore employed a question-answering: Sig- diff. from Discourse ILP.
evaluation paradigm which has been previously used
for summarisation evaluation and text comprehen-

sion (Mani et al. 2002; Morris et al. 1992). Theyere asked to provide answers as best they could.
overall objective of our Q&A task is to determine e glicited answers for six documents in three com-
how accurate each document (generated by diffefyession conditions: gold standard, using the ILP
ent compression systems) is at answering questiongiscourse model, and McDonald’s (2006) model.
For this we require a methodology for constructingzach participant was also asked to rate the readabil-
Q&A pairs and for scoring each document. ity of the compressed document on a seven point

Two annotators were independently instructedcale. A Latin Square design prevented participants
to create Q&A pairs for the original documentsfrom seeing two different compressions of the same
in the test set. Each annotator read the documegbcument.

and then drafted no more than ten questions and
answers related to its content. Annotators were |N€ Study was conducted remotely over the In-

asked to create factual-based questions which ri€rnet. Participants were presented with a set of in-
quired an unambiguous answer; these were typical ructions that explained the Q&A task and provided

who/what/where/when/how style questions. Anno*@mples. Subjects were first asked to read the com-
tators then compared and revised their questior’?—ressed document and rate its readability. Questions

answer pairs to create a common agreed upon sWere then presented one at a time and participants

Revisions typically involved merging questions, rewere allowed to consult the document for the an-

wording and simplifying questions, and in somewer. Once a participant had_prc_)videc_i an answer
cases splitting a question into multiple questiondN€Y were not allowed to modify it. Thirty unpaid
Documents for which too few questions were creY0lUNteers took partin our Q&A study. All were self
ated or for which questions or answers were too anféPorted native English speakers.

biguous were removed. This left an evaluation set The answers provided by the participants were
of six documents with between five to eight conscored against the answer key. Answers were con-
cise questions per document. Some example quesdered correct if they were identical to the answer
tions corresponding to the document from Figure key or subsumed by it. For instancklount Etna
are given in Figure 3; correct answers are shown ifyas considered a right answer to the first question
parentheses. from Figure 3. A compressed document receives a

Compressed documents and their accompanyifgll score if subjects have answered all questions re-
guestions were presented to human subjects wheting to it correctly.



6 Results 7 Conclusions and Future Work

_ _ In this paper we proposed a novel method for au-

As a sanity check, we first assessed the comprégmmatic sentence compression. Central in our ap-
sions produced by our model and McDonald (2006)r0ach is the use of discourse-level information
on a sentence-by-sentence basis without taking theéhich we argue is an important prerequisite for doc-
documents into account. There is no hope for genefiment (as opposed to sentence) compression. Our
ating _shorter documents if the compres§ed sentenceRdel uses integer programming for inferring glob-
are either too wordy or too ungrammatical. Table Jally optimal compressions in the presence of lin-
shows the compression rates (CompR) for the twgyistically motivated constraints. Our discourse con-
systems and evaluates the quality of their output Uggraints aim to capture local coherence and are in-
ing F-score based on grammatical relations. As Cadhired by centering theory and lexical chains. We
be seen, the Discourse ILP compressions are slightd,owed that our model can be successfully em-
longer than McDonald (65.4% vs. 60.1%) but Closebloyed to produce compressed documents that pre-
to the human gold standard (70.3%). This is not SUkene most of the original’'s core content.
prising, the Discourse ILP model takes the entire o, approach to document compression differs
document into account, and compression decisioRgm most summarisation work in that our sum-
will be slightly more conservative. The Discoursemaries are fairly long. However, we believe this is
ILP’s output is significantly better than McDonald inthe first step into understanding how compression
terms of F-score, indicating that discourse-level inggp, help summarisation. In the future, we will in-
formation is_generally heIpfuI._ Both systems coulderface our compression model with sentence ex-
use further improvement as inter-annotator agregraction. The discourse annotations can help guide
ment on this data yields an F-score of 65.8%. the extraction method into selecting topically re-

Let us now consider the results of our documentlated sentences which can consequently be com-
based evaluation. Table 2 shows the mean readaljiiressed together. The compression rate can be tai-
ity ratings obtained for each system and the petored through additional constraints which act on
centage of questions answered correctly. We uséle output length to ensure precise word limits are
an Analysis of Variance (ROVA) to examine the ef- obeyed.
fect of compression type (McDonald, Discourse ILP, We also plan to study the effect of global dis-
Gold Standard). The ROVA revealed a reliable ef- course structure (Daumé Il and Marcu 2002) on the
fect on both readability and Q&A. Post-hoc Tukeycompression task. In general, we will assess the im-
tests showed that McDonald and the Discourse ILPact of discourse information more systematically
model do not differ significantly in terms of read- by incorporating it into generative and discrimina-
ability. However, they are significantly less readtive modelling paradigms.
able than the gold standard & 0.05). For the Q&A
task we observe that our system is significantly bee
ter than McDonaldq < 0.05) and not significantly "
worse than the gold standard. hi
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