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Sentence compression holds promise for many applications ranging from summarization to
subtitle generation. The task is typically performed on isolated sentences without taking the
surrounding context into account, even though most applications would operate over entire
documents. In this article we present a discourse-informed model which is capable of producing
document compressions that are coherent and informative. Our model is inspired by theories of
local coherence and formulated within the framework of integer linear programming. Experimen-
tal results show significant improvements over a state-of-the-art discourse agnostic approach.

1. Introduction

Recent years have witnessed increasing interest in sentence compression. The task
encompasses automatic methods for shortening sentences with minimal information
loss while preserving their grammaticality. The popularity of sentence compression is
largely due to its relevance for applications. Summarization is a case in point here. Most
summarizers to date aim to produce informative summaries at a given compression
rate. If we can have a compression component that reduces sentences to a minimal
length and still retains the most important content, then we should be able to pack more
information content into a fixed size summary. In other words, sentence compression
would allow summarizers to increase the overall amount of information extracted
without increasing the summary length (Lin 2003; Zajic et al. 2007). It could also be
used as a post-processing step in order to render summaries more coherent and less
repetitive (Mani, Gates, and Bloedorn 1999).

Beyond summarization, a sentence compression module could be used to display
text on small screen devices such as PDAs (Corston-Oliver 2001) or as a reading aid
for the blind (Grefenstette 1998). Sentence compression could also benefit information
retrieval by eliminating extraneous information from the documents indexed by the
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retrieval engine. This way it would be possible to store less information in the index
without dramatically affecting retrieval performance (Olivers and Dolan 1999).

In theory, sentence compression may involve several rewrite operations such as
deletion, substitution, insertion, and word reordering. In practice, however, the task
is commonly defined as a word deletion problem: Given an input sentence of words
x = x1, x2, . . . , xn, the aim is to produce a compression by removing any subset of these
words (Knight and Marcu 2002). Many sentence compression models aim to learn dele-
tion rules from a parsed parallel corpus of source sentences and their target compres-
sions (Knight and Marcu 2002; Turner and Charniak 2005; Galley and McKeown 2007;
Cohn and Lapata 2009). For example, Knight and Marcu (2002) learn a synchronous
context-free grammar (Aho and Ullman 1969) from such a corpus. The grammar rules
have weights (essentially probabilities estimated using maximum likelihood) and are
used to find the best compression from the set of all possible compressions for a given
sentence. Other approaches exploit syntactic information without making explicit use
of a parallel grammar—for example, by learning which words or constituents to delete
from a parse tree (Riezler et al. 2003; Nguyen et al. 2004; McDonald 2006; Clarke and
Lapata 2008).

Despite differences in formulation and training requirements (some approaches
require a parallel corpus, whereas others do not), existing models are similar in that
they compress sentences in isolation without taking their surrounding context into
account. This is in marked contrast with common practice in summarization. Pro-
fessional abstractors often rely on contextual cues while creating summaries (Endres-
Niggemeyer 1998). This is true of automatic summarization systems too, which consider
the position of a sentence in a document and how it relates to its surrounding sentences
(Kupiec, Pedersen, and Chen 1995; Barzilay and Elhadad 1997; Marcu 2000; Teufel and
Moens 2002). Determining which information is important in a sentence is not merely
a function of its syntactic position (e.g., deleting the verb or the subject of a sentence is
less likely). A variety of contextual factors can play a role, such as the discourse topic,
whether the sentence introduces new entities or events that have not been mentioned
before, or the reader’s background knowledge.

A sentence-centric view of compression is also at odds with most relevant appli-
cations which aim to create a shorter document rather than a single sentence. The
resulting document must not only be grammatical but also coherent if it is to function as
a replacement for the original. However, this cannot be guaranteed without knowledge
of how the discourse progresses from sentence to sentence. To give a simple example, a
contextually aware compression system could drop a word or phrase from the current
sentence, simply because it is not mentioned anywhere else in the document and is
therefore deemed unimportant. Or it could decide to retain it for the sake of topic
continuity.

In this article we are interested in creating a compression model that is appropriate
for both documents and sentences. Luckily, a variety of discourse theories have been
developed over the years (e.g., Mann and Thompson, 1988; Grosz, Weinstein, and Joshi
1995; Halliday and Hasan 1976) and have found application in summarization (Barzilay
and Elhadad 1997; Marcu 2000; Teufel and Moens 2002) and other text generation
applications (Scott and de Souza 1990; Kibble and Power 2004). In creating a context-
sensitive compression model we are faced with three important questions: (1) Which
type of discourse information is useful for compression? (2) Is it amenable to automatic
processing (there is little hope for interfacing our compression model with applications
if discourse-level cues cannot be identified robustly)? and (3) How are sentence- and
document-based information best integrated in a unified modeling framework?
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In building our compression model we borrow insights from two popular models
of discourse, Centering Theory (Grosz, Weinstein, and Joshi 1995) and lexical chains
(Morris and Hirst 1991). Both approaches capture local coherence—the way adjacent
sentences bind together to form a larger discourse. They also both share the view that
discourse coherence revolves around discourse entities and the way they are intro-
duced and discussed. We first automatically augment our documents with annotations
pertaining to centering and lexical chains, which we subsequently use to inform our
compression model. The latter is an extension of the integer linear programming for-
mulation proposed by Clarke and Lapata (2008). In a nutshell, sentence compression is
modeled as an optimization problem. Given a long sentence, a compression is formed
by retaining the words that maximize a scoring function coupled with a small number
of constraints ensuring that the resulting output is grammatical. The constraints are en-
coded as linear inequalities whose solution is found using integer linear programming
(ILP; Winston and Venkataramanan 2003; Vanderbei 2001). Discourse-level information
can be straightforwardly incorporated by slightly changing the compression objective—
we now wish to compress entire documents rather than isolated sentences—and aug-
menting the constraint set with discourse-specific constraints. We use our model to
compress whole documents (rather than sentences sequentially) and evaluate whether
the resulting text is understandable and informative using a question-answering task.
We show that our method yields significant improvements over discourse agnostic
state-of-the-art compression models (McDonald 2006; Clarke and Lapata 2008).

The remainder of this article is organized as follows. Section 2 provides an overview
of related work. In Section 3 we present the ILP framework and compression model we
employ in our experiments. We introduce our discourse-related extensions in Sections 4
and 5. Section 6 discusses our experimental set-up and evaluation methodology. Our
results are presented in Section 7. Discussion of future work concludes the paper.

2. Related Work

Sentence compression has been extensively studied across different modeling para-
digms and has received both generative and discriminative formulations. Most gen-
erative approaches (Knight and Marcu 2002; Turner and Charniak 2005; Galley and
McKeown 2007) are instantiations of the noisy-channel model, whereas discriminative
formulations include decision-tree learning (Knight and Marcu 2002), maximum en-
tropy (Riezler et al. 2003), support vector machines (Nguyen et al. 2004), and large-
margin learning (McDonald 2006; Cohn and Lapata 2009). These models are trained
on a parallel corpus and learn either which constituents to delete or which words to
place adjacently in the compression output. Relatively few approaches dispense with
the parallel corpus and generate compressions in an unsupervised manner using either
a scoring function (Hori and Furui 2004; Clarke and Lapata 2008) or compression rules
that are approximated from a non-parallel corpus such as the Penn Treebank (Turner
and Charniak 2005).

The majority of sentence compression approaches only look at sentences in isolation
without taking into account any discourse information. However, there are two notable
exceptions. Jing (2000) uses information from the local context as evidence for and
against the removal of phrases during sentence compression. The idea here is that
words or phrases which have more links to the surrounding context are more indicative
of its topic, and thus should not be dropped. The topic is not explicitly identified;
instead the importance of each phrase is determined by the number of lexical links
within the local context. A link is created between two words if they are repetitions,
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morphologically related, or associated in WordNet (Fellbaum 1998) through a lexical
relation (e.g., hyponymy, synonymy). Links have weights—for example, repetition is
considered more important than hypernymy. Each word is assigned a context weight
based on the number of links to the local context and the importance of each relation
type. Phrases are scored by the sum of their children’s context scores. The decision to
drop a phrase is influenced by several factors, besides the local context, such as the
phrase’s grammatical role and previous evidence from a parallel corpus.

Daumé III and Marcu (2002) generalize sentence compression to document com-
pression. Given a document D = w1, w2, . . . , wn the goal is to produce a summary, S, by
dropping any subset of words from D. Their system uses the discourse structure of a
document and the syntactic structure of each of its sentences in order to decide which
words to drop. Specifically, they extend Knight and Marcu’s (2002) noisy-channel model
so that it can be applied to entire documents. In its simpler sentence compression instan-
tiation, the noisy-channel model has two components, a language model and a channel
model, both of which act on probabilistic context-free grammar (PCFG) representations.
Daumé III and Marcu define a noisy-channel model over syntax and discourse trees.
Following Rhetorical Structure Theory (RST; Mann and Thompson 1988), they represent
documents by trees whose leaves correspond to elementary discourse units (edus) and
whose nodes specify how these and larger units (e.g., multi-sentence segments) are
linked to each other by rhetorical relations (e.g., Contrast, Elaboration). Discourse units
are further characterized in terms of their text importance: nuclei denote central seg-
ments, whereas satellites denote peripheral ones. Their model therefore learns not only
which syntactic constituents to drop but also which discourse units are unimportant.

While Daumé III and Marcu (2002) present a hybrid summarizer that can simulta-
neously delete words and sentences from a document, the majority of summarization
systems to date simply select and present to the user the most important sentences in
a text (see Mani [2001] for a comprehensive overview of the methods used to achieve
this). Discourse-level information plays a prominent role here as the overall document
organization can indicate whether a sentence should be included in the summary. A
variety of approaches have focused on cohesion (Halliday and Hasan 1976) and the
way it is expressed in discourse. The term broadly describes a variety of linguistic
devices responsible for making the elements of a text appear unified or connected.
Examples include word repetition, anaphora, ellipsis, and the use of synonyms or
superordinates. The underlying assumption is that sentences connected to many other
sentences are likely to carry salient information and should therefore be included
in the summary (Sjorochod’ko 1972). In exploiting cohesion for summarization, it is
necessary to somehow represent cohesive ties. For instance, Boguraev and Kennedy
(1997) represent cohesion in terms of anaphoric relations, whereas Barzilay and Elhadad
(1997) operationalize cohesion via lexical chains—sequences of related words spanning
a topical unit (Morris and Hirst 1991). Besides repetition, they also examine semantic
relations based on synonymy, antonymy, hypernymy, and holonymy (we discuss their
approach in more detail in Section 4.1).

Other approaches characterize the document in terms of discourse structure
and rhetorical relations. Documents are commonly represented as trees (Mann and
Thompson 1988; Corston-Oliver 1998; Ono, Sumita, and Miike 1994; Carlson et al. 2001)
and the position of a sentence in a tree is indicative of its importance. To give an ex-
ample, Marcu (2000) proposes a summarization algorithm based on RST. Assuming
that nuclei are more salient than satellites, the importance of sentential or clausal units
can be determined based on tree depth. Alternatively, discourse structure can be repre-
sented as a graph (Wolf and Gibson 2004) and sentence importance is determined in
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graph-theoretic terms, by using graph connectivity measures such as in-degree or
PageRank (Brin and Page 1998). Although a great deal of research in summarization
has focused on global properties of discourse structure, there is evidence that local
coherence may also be useful without the added complexity of computing discourse
representations. (Unfortunately, discourse parsers have yet to achieve levels of perfor-
mance comparable to syntactic parsers.) Teufel and Moens (2002) identify discourse
relations on a sentence-by-sentence basis without presupposing an explicit discourse
structure. Inspired by Centering Theory (Grosz, Weinstein, and Joshi 1995)—a theory
of local discourse structure that models the interaction of referential continuity and
salience of discourse entities—Orăsan (2003) proposes a summarization algorithm that
extracts sentences with at least one entity in common. The idea here is that summaries
containing sentences referring to the same entity will be more coherent. Other work
has relied on centering not so much to create summaries but to assess whether they are
readable (Barzilay and Lapata 2008).

Our approach differs from previous sentence compression approaches in three
key respects. First, we present a compression model that is contextually aware; decisions
on whether to remove or retain a word (or phrase) are informed by its discourse prop-
erties (e.g., whether it introduces a new topic, or whether it is semantically related to the
previous sentence). Unlike Jing (2000) we explicitly identify topically important words
and assume specific representations of discourse structure. Secondly, in contrast to
Daumé III and Marcu (2002) and other summarization work, we adopt a less global
and more shallow representation of discourse based on Centering Theory and lexical
chains. One of our aims is to exploit discourse features that can be computed efficiently
and relatively cheaply. Thirdly, our compression model can be applied to isolated
sentences as well as to entire documents. We claim the latter is more in the spirit of real-
world applications where the goal is to generate a condensed and coherent text. Unlike
Daumé III and Marcu (2002) our model can delete words but not sentences, although it
could be used to compress documents of any type, even summaries.

3. The Compression Model

Our model is an extension of the approach put forward in Clarke and Lapata (2008)
where they formulate sentence compression as an optimization problem. Given a long
sentence, a compression is created by retaining the words that maximize a scoring func-
tion. The latter is essentially a language model coupled with a few constraints ensuring
that the resulting output is grammatical. The language model and the constraints are
encoded as linear inequalities whose solution is found using ILP.1

Their model is a good point of departure for studying document-based compres-
sion. As it does not require a parallel corpus, it can be ported across domains and
text genres, while delivering state-of-the-art results (see Clarke and Lapata [2008] for
details). Importantly, discourse-level information can be easily incorporated in two
ways: Firstly, by applying the compression objective to entire documents rather than
individual sentences; and secondly, by augmenting the constraint set with discourse-
related information. This is not the case for other approaches (e.g., those based on
the noisy channel model) where compression is modeled by grammar rules indicating
which constituents to delete in a syntactic context. Moreover, ILP delivers a globally

1 It is outside the scope of this article to provide an introduction to ILP. We refer the interested reader to
Winston and Venkataramanan (2003) and Vanderbei (2001) for comprehensive overviews.
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optimal solution by searching over the entire compression space2 without employing
heuristics or approximations during decoding (see Turner and Charniak [2005] and
McDonald [2006] for examples).

Besides sentence compression, the ILP modeling framework has been applied to
a wide range of natural language processing tasks demonstrating improvements over
more traditional methods. Examples include reluctant paraphrasing (Dras 1997), rela-
tion extraction (Roth and Yih 2004), semantic role labeling (Punyakanok et al. 2004),
concept-to-text generation (Marciniak and Strube 2005; Barzilay and Lapata 2006),
dependency parsing (Riedel and Clarke 2006; Martins, Smith, and Xing 2009), and
coreference resolution (Denis and Baldridge 2007).

In the following we describe Clarke and Lapata’s (2008) model in more detail.
Sections 4–5 present our extensions and modifications.

3.1 Language Model

Let x = x0, x1, x2, . . . , xn denote a source sentence for which we wish to generate a target
compression. We use x0 to denote the “start” token. We introduce a decision variable
for each word in the source and constrain it to be binary; a value of 0 represents a word
being dropped, whereas a value of 1 includes the word in the target compression. Let:

δi =
{

1 if xi is in the compression
0 otherwise ∀i ∈ [1 . . . n]

A trigram language model forms the backbone of the compression model. The language
model is formulated as an integer linear program with the introduction of extra decision
variables indicating which word sequences should be retained or dropped from the
compression. Let:

αi =
{

1 if xi starts the compression
0 otherwise ∀i ∈ [1 . . . n]

βij =

⎧⎨
⎩

1 if sequence xi, xj ends
the compression ∀i ∈ [0 . . . n − 1]

0 otherwise ∀j ∈ [i + 1 . . . n]

γijk =

⎧⎨
⎩

1 if sequence xi, xj, xk ∀i ∈ [0 . . . n − 2]
is in the compression ∀j ∈ [i + 1 . . . n − 1]

0 otherwise ∀k ∈ [j + 1 . . . n]

The objective function is expressed in Equation (1). It is the sum of all possible trigrams
multiplied by the appropriate decision variable where n is the length of the sentence
(note all probabilities throughout this paper are log-transformed). The objective func-
tion also includes a significance score I(xi) for each word xi multiplied by the decision

2 For a sentence of length n, there are 2n compressions.
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variable for that word (see the first summation term in Equation (1)). This score high-
lights important content words in a sentence and is defined in Section 3.2.

max z =
n∑

i=1

δi · λI(xi) +
n∑

i=1

αi · P(xi|start)

+
n−2∑
i=1

n−1∑
j=i+1

n∑
k=j+1

γijk · P(xk|xi, xj)

+
n−1∑
i=0

n∑
j=i+1

βij · P(end|xi, xj)

−ζmin · μ − ζmax · μ (1)

Note that we add a weighting factor, λ, to the objective, in order to counterbalance the
importance of the language model and the significance score.

The final component of our objective function, ζ · μ, relates to the compression rate.
As we explain shortly (Equations (7) and (8)) the compressions our model generates
are subject to a prespecified compression rate. For instance we may wish to create com-
pressions at a minimum rate of 40% and maximum rate of 70%. The compression rate
constraint can be violated with a penalty, μ, which applies to each word. ζmin counts the
number of words under the compression rate and ζmax the number of words over the
compression rate. Thus, the more the output violates the compression rate, the larger
the penalty will be. In other words, the term ζmin · μ − ζmax · μ acts as a soft constraint
providing a means to guide the compression towards the desired rate. The violation
penalty μ is tuned experimentally and may vary depending on the desired compression
rate or application.

The objective function in Equation (1) allows any combination of trigrams to be
selected. As a result, invalid trigram sequences (e.g., two or more trigrams containing
the “end” token) could appear in the target compression. We avoid this situation by
introducing sequential constraints (on the decision variables δi, γijk, αi, and βij) that
restrict the set of allowable trigram combinations.

Constraint 1. Exactly one word can begin a sentence.

n∑
i=1

αi = 1 (2)

Constraint 2. If a word is included in the sentence it must either start the sentence or be
preceded by two other words or one other word and the “start” token x0.

δk − αk −
k−2∑
i=0

k−1∑
j=i+1

γijk = 0 (3)

∀k : k ∈ [1 . . . n]
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Constraint 3. If a word is included in the sentence it must either be preceded by one word
and followed by another or it must be preceded by one word and end the sentence.

δj −
j−1∑
i=0

n∑
k=j+1

γijk −
j−1∑
i=0

βij = 0 (4)

∀j : j ∈ [1 . . . n]

Constraint 4. If a word is in the sentence it must be followed by two words or followed
by one word and then the end of the sentence or it must be preceded by one word and
end the sentence.

δi −
n−1∑

j=i+1

n∑
k=j+1

γijk −
n∑

j=i+1

βij −
i−1∑
h=0

βhi = 0 (5)

∀i : i ∈ [1 . . . n]

Constraint 5. Exactly one word pair can end the sentence.

n−1∑
i=0

n∑
j=i+1

βij = 1 (6)

Note that Equations (2)–(6) are merely well-formedness constraints and differ from the
compression-specific constraints which we discuss subsequently. Any language model
formulated as an ILP would require similar constraints.

Compression rate constraints. Depending on the application or the task at hand, we
may require that the compressions fall within a specific compression rate. We assume
here that our model is given a compression rate range, cmin% − cmax%, and create two
constraints that penalize compressions which do not fall within this range:

n∑
i=0

δi + ζmin ≥ cmin · n (7)

n∑
i=0

δi − ζmax ≤ cmax · n (8)

Here, δi is still a decision variable for each word, n is the number of words in the
sentence, ζ is the number of words over or under the compression rate, and cmin and
cmax are the limits of the range.

3.2 Significance Score

The significance score is an attempt at capturing the gist of a sentence. The score has
two components which correspond to document and sentence importance, respectively.
Given a sentence and its syntactic parse, we define I(xi) as:

I(xi) = fi log Fa
Fi

· l
N (9)
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where xi is a topic word, fi is xi’s document frequency, Fi its corpus frequency, and Fa the
sum of all topic words in the corpus; l is the number of clause constituents above xi, and
N is the deepest level of clause embedding in the parse.

The first term in Equation (9) is similar to tf ∗ idf ; it highlights words that are
important in the document and should therefore not be dropped. The score is not
applied indiscriminately to all words in a sentence but solely to topic-related words,
which are approximated by nouns and verbs. This is offset by the importance of these
words in the specific sentence being compressed. Intuitively, in a sentence with multiply
nested clauses, more deeply embedded clauses tend to carry more semantic content.
This is illustrated in Figure 1, which depicts the clause embedding for the sentence Mr
Field has said he will resign if he is not reselected, a move which could divide the party nationally.
Here, the most important information is conveyed by clauses S3 (he will resign) and S4
(if he is not reselected), which are embedded. Accordingly, we should give more weight
to words found in these clauses than in the main clause (S1 in Figure 1). A simple way
to enforce this is to give clauses weight proportional to the level of embedding (see the
second term in Equation (9)). Therefore in Figure 1, the term l

N is 1.0 (4/4) for clause S4,
0.75 (3/4) for clause S3, and so on. Individual words inherit their weight from their
clauses. We obtain syntactic information in our experiments from RASP (Briscoe and
Carroll 2002), a domain-independent, robust parsing system for English. However, any
other parser with broadly similar output (e.g., Lin 2001) could also serve our purposes.

Note that the significance score in Equation (9) does not weight differentially the
contribution of tf ∗ idf versus level of embedding. Although we found in our exper-
iments that the latter term was as important as tf ∗ idf in producing meaningful com-
pressions, there may be applications or data sets where the contribution of the two terms
varies. This could be easily remedied by introducing a weighting factor.

3.3 Sentential Constraints

In its original formulation, the model also contains a small number of sentence-level
constraints. Their aim is to preserve the meaning and structure of the original sentence
as much as possible. The majority of constraints revolve around modification and

Figure 1
The clause embedding of the sentence Mr Field has said he will resign if he is not reselected, a move
which could divide the party nationally; nested boxes correspond to nested clauses.
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argument structure and are defined over parse trees or grammatical relations which
as mentioned earlier we extract from RASP.

Modifier Constraints. Modifier constraints ensure that relationships between head words
and their modifiers remain grammatical in the compression:

δi − δj ≥ 0 (10)

∀i, j : xj ∈ xi’s ncmods

δi − δj ≥ 0 (11)

∀i, j : xj ∈ xi’s detmods

Equation (10) guarantees that if we include a non-clausal modifier3 (ncmod) in the
compression (such as an adjective or a noun) then the head of the modifier must also be
included; this is repeated for determiners (detmod) in Equation (11).

Other modifier constraints ensure the meaning of the source sentence is preserved
in the compression. For example, Equation (12) enforces not in the compression when
the head is included. A similar constraint is added for possessive modifiers (e.g., his,
our), including genitives (e.g., John’s gift), as shown in Equation (13).

δi − δj = 0 (12)

∀i, j : xj ∈ xi’s ncmods ∧ xj = not

δi − δj = 0 (13)

∀i, j : xj ∈ xi’s possessive mods

Argument Structure Constraints. Argument structure constraints make sure that the re-
sulting compression has a canonical argument structure. The first constraint (Equa-
tion (14)) ensures that if a verb is present in the compression then so are its arguments,
and if any of the arguments are included in the compression then the verb must also be
included.

δi − δj = 0 (14)

∀i, j : xj ∈ subject/object of verb xi

Another constraint forces the compression to contain at least one verb provided the
source sentence contains one as well:

∑
i:xi∈verbs

δi ≥ 1 (15)

3 Clausal modifiers (cmod) are adjuncts modifying entire clauses. In the example he ate the cake because he
was hungry, the because-clause is a modifier of the sentence he ate the cake.
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Other constraints apply to prepositional phrases and subordinate clauses and force the
introducing term (i.e., the preposition, or subordinator) to be included in the compres-
sion if any word from within the syntactic constituent is also included:

δi − δj ≥ 0 (16)

∀i, j : xj ∈ PP/SUB ∧ xi starts PP/SUB

By subordinator (SUB) we mean wh-words (e.g., who, which, how, where), the word that,
and subordinating conjunctions (e.g., after, although, because). The reverse is also true—
that is, if the introducing term is included, at least one other word from the syntactic
constituent should also be included.

∑
i:xi∈PP/SUB

δi − δj ≥ 0 (17)

∀j : xj starts PP/SUB

All the constraints described thus far are mostly syntactic. They operate over
parse trees or dependency graphs. In the following sections we present our discourse-
specific constraints. But first we discuss how we represent and automatically detect
discourse-related information.

4. Discourse Representation

Obtaining an appropriate representation of discourse is the first step toward creating a
compression model that exploits document-level information. Our goal is to annotate
documents automatically with discourse-level information which will subsequently be
used to inform our compression procedure. As mentioned in Section 2 previous summa-
rization work has mainly focused on cohesion (Sjorochod’ko 1972; Barzilay and Elhadad
1997) or global discourse structure (Marcu 2000; Daumé III and Marcu 2002). We also
opt for a cohesion-based representation of discourse operationalized by lexical chains
(Morris and Hirst 1991). Computing global discourse structure robustly and accurately
is far from trivial. For example, Daumé III and Marcu (2002) employ an RST parser4

but find that it produces noisy output for documents containing longer sentences.
We therefore focus on the less ambitious task of characterizing local coherence—the
way adjacent sentences bind together to form a larger discourse. Although it does
not explicitly capture long distance relationships between sentences, local coherence is
still an important prerequisite for maintaining global coherence. Specifically, we turn
to Centering Theory (Grosz, Weinstein, and Joshi 1995) and adopt an entity-based
representation of discourse.

In the following sections we briefly introduce lexical chains and centering and
describe our algorithms for obtaining discourse annotations.

4 This is the decision-based parser described in Marcu (2000); it achieves an F1 of 38.2 for the identification
of elementary discourse units, 50.0 for hierarchical spans, 39.9 for nuclearity, and 23.4 for relation
assignment.
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4.1 Lexical Chains

Lexical cohesion refers to the degree of semantic relatedness observed among lexical
items in a document. The term was coined by Halliday and Hasan (1976), who observed
that coherent documents tend to have more related terms or phrases than incoherent
ones. A number of linguistic devices can be used to signal cohesion; these range from
repetition, to synonymy, hyponymy, and meronymy. Lexical chains are a representation
of lexical cohesion as sequences of semantically related words (Morris and Hirst 1991).
There is a close relationship between discourse structure and cohesion. Related words
tend to co-occur within the same discourse. Thus, cohesion is a surface indicator of
discourse structure and can be identified through lexical chains.

Lexical chains provide a useful means for describing the topic flow in discourse.
For example, a document containing the chain {house, home, loft, house} will proba-
bly describe a situation involving a house. Documents often have multiple topics (or
themes) and consequently will contain many different lexical chains. Some of these
topics will be peripheral and thus represented by short chains whereas main topics
will correspond to dense longer chains. Words participating in the latter chains are
important for our compression task—they reveal what the document is about—and in
all likelihood should not be deleted.

Barzilay and Elhadad (1997) describe a technique for building lexical chains for
extractive text summarization. In their approach chains of semantically related expres-
sions are used to select sentences for inclusion in a summary. Their algorithm uses
WordNet (Fellbaum 1998) to build chains of nouns (and noun compounds). Nouns
are considered related if they are repetitions or linked in WordNet via synonymy,
antonymy, hypernymy, and holonymy. Computing lexical chains would be relatively
straightforward if each word was always represented by a single sense. However, due
to the high level of polysemy inherent in WordNet, algorithms developed for computing
lexical chains must adopt some strategy for disambiguating word senses. For example,
Hirst and St-Onge (1998) greedily disambiguate a word as soon as it is encountered by
selecting the sense most strongly related to existing chain members, whereas Barzilay
and Elhadad (1997) consider all possible alternatives of word senses and then choose
the best one among them.

Once created, lexical chains can serve to highlight which document sentences are
more topical, and should therefore be included in a summary. Barzilay and Elhadad
(1997) rank their chains heuristically by a score based on their length and homogeneity.
They generate summaries by extracting sentences corresponding to strong chains, that
is, chains whose score is two standard deviations above the average score. Analogously,
we also wish to determine which lexical chains indicate the most prevalent discourse
topics. Our assumption is that terms belonging to these chains are indicative of the
document’s main focus and should therefore be retained in the compressed output.
Barzilay and Elhadad’s (1997) scoring function aims to identify sentences (for inclusion
in a summary) that have a high concentration of chain members. In contrast, we are
interested in chains that span several sentences. We thus score chains according to the
number of sentences their terms occur in. For example, the hypothetical chain {house3,
home3, loft3, house5} (where wordi denotes word occurring in sentence i) would be given a
score of two as the terms occur only in two sentences. We assume that a chain signals a
prevalent discourse topic if it occurs throughout more sentences than the average chain.
The scoring algorithm is outlined more formally as:

1. Compute the lexical chains for the document.
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2. Score(Chain) = Sentences(Chain).

3. Discard chains for which Score(Chain) < Average(Score).

4. Mark terms from the remaining chains as being the focus of the document.

We use the method of Galley and McKeown (2003) to compute lexical chains for
each document.5 It improves on Barzilay and Elhadad’s (1997) original algorithm by
providing better word sense disambiguation and linear runtime. The algorithm pro-
ceeds in three steps. Initially, a graph is built representing all possible interpretations
of the document under consideration. The text is processed sequentially, comparing
each word against all words previously read. If a relation exists between the senses of
the current word and any possible sense of a previous word, a connection is formed
between the appropriate words and senses. The strength of the connection is a function
of the type of relationship and of the distance between the words in the text (in terms
of words, sentences, and paragraphs). Words are represented as nodes in the graph and
semantic relations as weighted edges. The relations considered by Galley and McKeown
(2003) are all first-order WordNet relations, with the addition of siblings—two words
are considered siblings if they are both hyponyms of the same hypernym. Next, all
occurrences of a given word are collected together. For each sense of a target word,
the strength of all connections involving that sense are summed, giving that sense a
unified score. The sense with the highest unified score is chosen as the correct sense
for the target word. Lastly, the lexical chains are constructed by collecting same sense
words into the same chain.

Figure 2 illustrates the lexical chains created by our algorithm for three documents
(taken from our test set). Chains are shown in oval boxes; members of the same chain
have the same index. The algorithm identifies three chains in the first document: {flow,
rate}, {today, day, yesterday}, and {miles, ft}. In the second document the chains are {body}
and {month, night}, and in the third {policeman, police}, {woman, woman, boyfriend, man}.
As can be seen, members of a chain represent a shared concept (e.g., “time”, “linear
unit”, or “person”). In some cases important topics are missed. For instance, in the first
document no chains were created with the words lava or debris. The second document
is about Mrs Allan and contains many references to her. However, because Mrs Allan is
not listed in WordNet it is not possible to create any chains for this word or any of its
coreferents (e.g., she, her). A similar problem is observed in the third document where
Anderson is not included in any chain even though he is one of the main protagonists
throughout the text. We next turn to Centering Theory as a means of identifying which
entities are prominent in a document.

4.2 Centering Theory

Centering Theory (Grosz, Weinstein, and Joshi 1995) is an entity-orientated theory of
local coherence and salience. One of the main ideas underlying centering is that certain
entities mentioned in an utterance are more central than others. This in turn imposes
constraints on the use of referring expressions and in particular on the use of pronouns.

The theory begins by assuming that a discourse is broken into “utterances.” These
can be phrases, clauses, sentences, or even paragraphs. At any point in discourse,
some entities are considered more salient than others, and are expected to exhibit

5 The software is available from http://www1.cs.columbia.edu/nlp/tools.cgi.
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Figure 2
Excerpts of documents from our test set with discourse annotations. Centers are in double boxes;
terms occurring in lexical chains are in oval boxes. Words with the same subscript are members
of the same chain (e.g., police, policeman).

different properties. Specifically, although each utterance may contain several entities, it
is assumed that a single entity is “centered,” thereby representing the current discourse
focus. One of the main claims underlying centering is that discourse segments in which
successive utterances contain common centers are more coherent than segments where
the center repeatedly changes.

Each utterance Uj in a discourse has a list of forward-looking centers, Cf (Uj), and
a unique backward-looking center, Cb(Uj). Cf (Uj) represents a ranking of the entities
invoked by Uj according to their salience. Thus, some entities in the discourse are
deemed more important than others. The Cb of the current utterance Uj is the highest-
ranked element in Cf (Uj−1) that is also in Uj. (Centering hypothesizes that the Cb is
likely to be realized as a pronoun.) Entities are commonly ranked in terms of their
grammatical function, namely, subjects are ranked more highly than objects, which are
more highly ranked than the rest (Grosz, Weinstein, and Joshi 1995). The Cb links Uj to
the previous discourse, but it does so locally since Cb(Uj) is chosen from Uj−1.

Centering formalizes fluctuations in topic continuity in terms of transitions be-
tween adjacent utterances. Grosz, Weinstein, and Joshi (1995) distinguish between three
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types of transitions. In CONTINUE transitions, Cb(Uj) = Cb(Uj−1) and Cb(Uj) is the
most highly ranked element entity in Uj. In RETAIN transitions Cb(Uj) = Cb(Uj−1) but
Cb(Uj) is not the most highly ranked element entity in Uj. And in SHIFT transitions
Cb(Uj) �= Cb(Uj−1). These transitions are ordered: CONTINUEs are preferred over RE-
TAINs, which are preferred over SHIFTs. And discourses with many CONTINUE transi-
tions are considered more coherent than those which repeatedly SHIFT from one center
to the other.

We demonstrate these concepts in passages (1a)–(1c) taken from Walker, Joshi, and
Prince (1998).

(1) a. Jeff helped Dick wash the car.
CF(Jeff, Dick, car)

b. He washed the windows as Dick waxed the car.
CF(Jeff, Dick, car)
CB=Jeff

c. He soaped a pane.
CF(Jeff, pane)
CB=Jeff

Here, the first utterance does not have a backward-looking center but has three forward-
looking centers Jeff, Dick, and car. To determine the backward-looking center of (1b) we
find the highest ranked entity among the forward-looking centers in (1a) which also
occurs in (1b). This is Jeff as it is the subject (and thus most salient entity) in (1a) and
present (as a pronoun) in (1b). The same procedure is applied for utterance (1c). Also
note that (1a) and (1b) are linked via a CONTINUE transition. The same is true for (1b)
and (1c).

For the purposes of our document compression application, we are not so much
interested in characterizing our texts in terms of entity transitions. Because they are all
written by humans, we can assume they are more or less coherent. Nonetheless, identi-
fying the centers in discourse seems important. These will indicate what the document
is about, who the main protagonists are, and how the discourse focus progresses. We
would probably not want to delete entities functioning as backward-looking centers.

As Centering is primarily a linguistic theory rather than a computational one,
it is not explicitly stated how the concepts of “utterance,” “entities,” and “ranking”
are instantiated. A great deal of research has been devoted to fleshing these out and
many different instantiations have been developed in the literature (see Poesio et al.
[2004] for details). In our case, the instantiation will have a bearing on the reliability
of the algorithm to detect centers. If the parameters are too specific then it may not be
possible to accurately determine the center for a given utterance. Because our aim is
to identify centers in discourse automatically, our parameter choice is driven by two
considerations: robustness and ease of computation.

We therefore follow previous work (e.g., Miltsakaki and Kukich 2000) in assuming
that the unit of an utterance is the sentence (i.e., a main clause with accompanying
subordinate and adjunct clauses). This is a simplistic view of an utterance; however it
is in line with our compression task, which also operates over sentences. We determine
which entities are invoked by a sentence using two methods. First, we perform named
entity identification and coreference resolution on each document using LingPipe,6 a

6 LingPipe can be downloaded from http://alias-i.com/lingpipe/.
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publicly available system. Named entities are not the only type of entity to occur in our
data, thus to ensure a high entity recall we add named entities and all remaining nouns7

to the Cf list. Entity matching between sentences is required to determine the Cb of a sen-
tence. This is done using the named entity’s unique identifier (as provided by LingPipe)
or by the entity’s surface form in the case of nouns not classified as named entities.

We follow Grosz, Weinstein, and Joshi (1995) in ranking entities according to their
grammatical roles; subjects are ranked more highly than objects, which are in turn
ranked higher than other grammatical roles; ties are broken using left-to-right ordering
of the grammatical roles in the sentence (Tetreault 2001). We identify grammatical roles
using RASP (Briscoe and Carroll 2002). Formally, our centering algorithm is as follows
(where Uj corresponds to sentence j):

1. Extract entities from Uj.

2. Create Cf (Uj) by ranking the entities in Uj according to their grammatical
role (subjects > objects > others, ties broken using left-to-right word order
of Uj).

3. Find the highest ranked entity in Cf (Uj−1) which occurs in Cf (Uj); set the
entity to be Cb(Uj).

This procedure involves several automatic steps (named entity recognition, coreference
resolution, and identification of grammatical roles) and will unavoidably produce some
noisy annotations. There is no guarantee, therefore, that the right Cb will be identified or
that all sentences will be marked with a Cb. The latter situation also occurs in passages
that contain abrupt changes in topic. In such cases, none of the entities realized in Uj will
occur in Cf (Uj−1). Hopefully, lexical chains will come to the rescue here as an alternative
means of capturing local content within a document.

Figure 2 shows the centers (in double boxes) identified by our algorithm. In the first
document lava and debris are marked as centers, in the second document Mrs Allan (and
its coreferents), and in the third one Peter Anderson and allotment. When comparing the
annotations produced by centering and the lexical chains, we observe that they tend
to be complementary. Proper nouns that lexical chains miss out on are often identi-
fied by centering. When the latter fails, due to errors in coreference resolution or the
identification of grammatical relations, lexical chains can be more robust because only
WordNet is required for their computation. As an example consider the third document
in Figure 2. Here, lexical chains provide a better insight into the text. Were we to rely
solely on centering, we would obtain annotations only for two entities, namely, Peter
Anderson and allotment.

5. The Discourse-Inspired Compression Model

We now turn our attention to incorporating discourse information into our compression
model. Before compression takes place, all documents are processed using the center-
ing and lexical chain algorithms described earlier. In each sentence we annotate the
center Cb(Uj) if one exists. Words (or phrases) that are present in the current sentence
and function as the center in the next sentence Cb(Uj+1) are also flagged. Finally, words

7 As determined by the word’s part-of-speech tag.
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are marked if they are part of a prevalent (high scoring) chain. Provided with this
additional knowledge our model takes a (sentence-separated) source document as input
and generates a compressed version by applying sentence-level and discourse-level
constraints to the entire document rather than to each sentence sequentially. In our
earlier formulation of the compression task (Clarke and Lapata 2008), we create and
solve an ILP for every sentence, whereas now an ILP is solved for each document.
This makes sense from a discourse perspective as compression decisions are not made
independently of each other. Also note that this latter formulation brings compression
closer to summarization as we can manipulate the document compression rate directly,
for example, by adding a constraint that forces the target document to be less than b to-
kens. This allows the model to choose how much to compress each individual sentence
without requiring that they all have the same compression rate. Accordingly, we modify
our objective function by introducing a sum over all sentences (assuming l sentences are
present in the document) and adding an additional index g to each decision variable to
track the sentence it came from:

max z =
l∑

g=1

[ ng∑
i=1

δg,i · λI(xg,i) +
ng∑

i=1

αg,i · P(xg,i|start)

+
ng−2∑
i=1

ng−1∑
j=i+1

ng∑
k=j+1

γg,ijk · P(xg,k|xg,i, xg,j)

+
ng−1∑
i=0

ng∑
j=i+1

βg,ij · P(end|xg,i, xg,j)

⎤
⎦

−ζmin · μ − ζmax · μ (18)

We also modify the compression rate soft constraint to act over the whole document
rather than sentences. This allows some sentences to violate the compression rate with-
out incurring a penalty, provided the compression rate of the document falls within the
specified range.

Document Compression Rate Constraints. We wish to penalize compressions which do not
fall within a desired compression rate range (cmin% − cmax%).

l∑
g=1

ng∑
i=0

δg,i + ζmin ≥ cmin ·
l∑

g=1

ng (19)

l∑
g=1

ng∑
i=0

ng∑
i=0

δg,i − ζmax ≤ cmax ·
l∑

g=1

ng (20)

Besides the new objective function and compression rate constraints, the model
makes use of all the sentence-level constraints introduced in Section 3.3, but is crucially
enhanced with three discourse constraints explained in the following.
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5.1 Discourse Constraints

Our first goal to is preserve the focus of each sentence. If the center, Cb, is identified in
the source sentence it must be retained in the target compression. If present, the entity
realized as the Cb in the following sentence should also be retained to ensure the focus
is preserved from one sentence to the next. Such a condition is easily captured with the
following ILP constraint:

δi = 1 (21)

∀i : xi ∈ {Cb(Uj), Cb(Uj+1)}

As an example, consider the first discourse in Figure 2. The constraints generated from
Equation (21) will require the compression to retain lava in the first two sentences and
debris in the second and third sentences.

As mentioned in the previous section, the centering algorithm relies on NLP tech-
nology that is not 100% accurate (named entity detection, parsing, and coreference
resolution). Therefore, the algorithm can only approximate the center for each sen-
tence and in some cases fails to identify any centers at all. Lexical chains provide a
complementary annotation of the topic or theme of the document using information
which is not restricted to adjacent sentences. Recall that once chains are created, they
are scored, and chains with scores less than the average are discarded. We consider all
remaining lexical chains as topical and require that words in these be retained in the
compression.

δi = 1 (22)

∀i : xi ∈ document topical lexical chain

Consider again the first text in Figure 2. Here, flow and rate are members of the same
chain (marked with subscript 1). According to constraint (22) both words must be
included in the compressed document. In the third document the words relating to
“police” (police, policeman) and “people” (woman, boyfriend, man) also would be retained
in the compression.

Our final discourse constraint concerns pronouns. Specifically, we force per-
sonal pronouns (whose antecedent may not always be identified) to be included in the
compression.

δi = 1 (23)

∀i : xi ∈ personal pronouns

The constraints just described ensure that the compressed document will retain
the discourse flow of the source document and will preserve terms indicative of
important topics. Document compression aside, the discourse constraints will also
benefit sentence-level compression. They provide our model, which so far relied on
syntactic evidence and surface level document characteristics (i.e., word frequencies),
additional evidence for retaining (discourse) relevant words.
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5.2 Applying the Constraints

As explained earlier we apply the model and the constraints to each document. In our
earlier sentence-based formulation, a significance score (see Section 3.2) was used to
highlight which nouns and verbs should be included in the compression. As far as
nouns are concerned, our discourse constraints perform a similar task. Thus, when a
sentence contains discourse annotations, we are inclined to trust them more and only
calculate the significance score for verbs.

During development it was observed that applying all discourse constraints si-
multaneously (see Equations (21)–(23)) results in relatively long compressions. To
counteract this, we employ these constraints using a back-off strategy that relies on
progressively less reliable information. Our back-off model works as follows: If center-
ing information is present, we apply the appropriate constraints (Equation (21)). If no
centers are present, we back off to the lexical chain information using Equation (22), and
in the absence of the latter we back off to the pronoun constraint (Equation (23)). Finally,
if discourse information is entirely absent from the sentence, we default to the sig-
nificance score. Sentential constraints are applied throughout irrespective of discourse
constraints. We determined this ordering (i.e., centering first, then lexical chains, and
then pronouns) on the development set. Centering tends to be more precise, whereas
lexical chains have high recall but lower precision in terms of identifying which entities
are in focus and should therefore not be dropped. In our test data (see Section 6 for
details), the centering constraint was used in 68.6% of the sentences. The model backed
off to lexical chains for 13.7% of the test sentences, whereas the pronoun constraint
was applied in 8.5%. Finally, the noun and verb significance score was used on the
remaining 9.2%. Examples of our system’s output for the texts in Figure 2 are given in
Figure 3.

6. Experimental Set-up

In this section we present our experimental set-up for assessing the performance of
the compression model. We describe the compression corpus used in our study, briefly
introduce the model used for comparison with our approach, and explain how system
output was evaluated.

6.1 Compression Corpus

Previous work on sentence compression has used almost exclusively the Ziff-Davis cor-
pus, a compression corpus derived automatically from document–abstract pairs (Knight
and Marcu 2002). Unfortunately, this corpus is not suitable for our purposes because it
consists of isolated sentences taken from several different documents. We thus created
a document-based compression corpus manually. Specifically, annotators were pre-
sented with one document at a time and asked to compress sentences sequentially
by removing tokens. They were free to remove any words they deemed superfluous,
provided their deletions (a) preserved the most important information in the source sen-
tence, and (b) ensured the compressed sentence remained grammatical. If they wished,
they could leave a sentence uncompressed. They were not allowed to delete whole
sentences even if they believed they contained no information content with respect to
the story, as this would blur the task with summarization. Following these guidelines,

429



Computational Linguistics Volume 36, Number 3

Figure 3
Compression output on excerpts from Figure 2 using the discourse model. Words that are
dropped are striken out.

the annotators created compressions for 82 stories (1,629 sentences) from the BNC and
the LA Times and Washington Post.8 Forty-eight (48) documents (962 sentences) were
used for training, 3 for development (63 sentences), and 31 for testing (604 sentences).

6.2 Comparison with State-of-the-Art

The discourse-based compression model was evaluated against our earlier sentence-
based ILP model (without the discourse constraints). In addition, we compared our ap-
proach against a state-of-the-art model which does not take discourse-level information
into account, does not use ILP, and is sentence-based. We give a brief description in the
following, and refer the interested reader to McDonald (2006) for details.

McDonald (2006) formalizes sentence compression as a classification task in a dis-
criminative large-margin learning framework: Pairs of words from the source sentence
are classified as being adjacent or not in the target compression. Let x = x1, . . . , xn
denote a source sentence with a target compression y = y1, . . . , ym where each yj oc-
curs in x. The function L(yi) ∈ {1 . . . n} maps word yi in the target to the index of
the word in the source, x (subject to the constraint that L(yi) < L(yi+1)). McDonald
defines the score of a compression y for a sentence x as the dot product between

8 The corpus is available from http://homepages.inf.ed.ac.uk/s0460084/data/.
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a high-dimensional feature representation over bigrams and a corresponding weight
vector:

s(x, y) =
|y|∑
j=2

w · f(x, L(yj−1), L(yj)) (24)

Decoding in this framework amounts to finding the combination of bigrams that maxi-
mize the scoring function in Equation (24). The maximization is solved using dynamic
programming (see McDonald [2006] for details).

The model parameters are estimated using the Margin Infused Relaxed Algorithm
(MIRA; Crammer and Singer 2003), a discriminative large-margin online learning tech-
nique. This algorithm learns by compressing each sentence and comparing the result
with the gold standard. The weights are updated so that the score of the correct com-
pression (the gold standard) is greater than the score of all other compressions by a
margin proportional to their loss. The loss function is the number of words falsely re-
tained or dropped in the incorrect compression relative to the gold standard. McDonald
employs a rich feature set defined over words, parts of speech, phrase structure trees,
and dependencies. These are gathered over adjacent words in the compression and the
words in between which were dropped.

It is important to note that McDonald (2006) is not a straw-man system. It achieves
highly competitive performance compared with Knight and Marcu’s (2002) noisy-
channel and decision-tree models. Due to its discriminative nature, the model is able
to use a large feature set and to optimize compression accuracy directly. In other words,
McDonald’s model has a head start against our own model which does not utilize a
large parallel corpus and has only a few constraints. The comparison of the two systems
allows us to establish that we have a competitive state-of-the-art system, even without
discourse constraints.

We trained McDonald’s (2006) model on the full training set (48 documents, 962
sentences). Our implementation used an identical feature set, the only difference being
that our phrase structure and dependency features were extracted from the output
of Roark’s (2001) parser. McDonald uses Charniak’s (2000) parser, which performs
comparably. We also employed a slightly modified loss function to encourage compres-
sion on our data set. McDonald’s results were reported on the Ziff-Davis corpus. The
language model required for the ILP system was trained on 80 million tokens from the
English GigaWord corpus (LDC2007T07) using the SRI Language Modeling Toolkit with
Kneser-Ney discounting. The significance score was calculated on 80 million tokens
from the same corpus. The ILP model presented in Equation (1) implements a weighted
combination of the significance score with a language model. The weight was tuned
on the development set which consisted of three source documents and their target
compressions. Our optimization procedure used Powell’s method (Press et al. 1992) and
a loss function based on the grammatical relations F1 between the gold standard and
system output. The optimal weight was approximately 9.0. Note that the development
set was the only source of parallel data our model had access to.

In order to compare all three models (sentence-based ILP, discourse-based ILP, and
McDonald [2006]) on an equal footing, we ensured that their compression rates were
similar. To do this, we first run McDonald’s model on our data and then set the com-
pression rate for our ILP models so that it is comparable to his output. This can be done
relatively straightforwardly by adjusting the compression rate range soft constraint. In
our experiments we set the minimum compression rate to 57%, the upper rate to 62%,
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and the violation penalty (μ) to −99. In practice, the soft constraint controlling the
compression rate can be removed or specifically tuned to suit the application.

6.3 Evaluation

Previous studies evaluate the well-formedness of automatically generated compres-
sions out of context. The target sentences are typically rated by naive subjects on two
dimensions, grammaticality and importance (Knight and Marcu 2002). Automatic eval-
uation measures have also been proposed. Riezler et al. (2003) compare the grammatical
relations found in the system output against those found in a gold standard using F1.
Although F1 conflates grammaticality and importance into a single score, it neverthe-
less has been shown to correlate reliably with human judgments (Clarke and Lapata
2006).

The aims of our evaluation study were twofold. Firstly, we wanted to examine
whether our discourse constraints improve the compressions for individual sentences.
There is no hope for generating shorter documents if the compressed sentences are
either too wordy or too ungrammatical. Secondly and more importantly, our goal was
to evaluate the compressed documents as a whole by examining whether they are
readable and the degree to which they retain key information when compared to the
originals. We evaluated sentence-based compressions automatically using F1 and the
grammatical relations annotations provided by RASP (Briscoe and Carroll 2002). This
parser is suited to the compression task as it provides parses for both full sentences
and sentence fragments and is generally robust enough to analyze semi-grammatical
sentences. We computed F1 over all the relations provided by RASP (e.g., subject,
direct/indirect object, modifier; 17 in total). We compared the output of our discourse
system on the test set (31 documents, 604 sentences) against the sentence-based ILP
model and McDonald (2006).

Our document-level evaluation was motivated by two questions: (1) Are the com-
pressed documents readable? and (2) How much key information is preserved between
the source document and its target compression? The readability of a document is
fairly straightforward to measure by asking participants to provide a rating (e.g., on a
seven-point scale). Measuring how much information is preserved in the compressed
document is more involved. Under the assumption that the target document is to
function as a replacement for the source, we can measure the extent to which the
compressed version can be used to find answers for questions which have been derived
from the source and are representative of its core content. We thus created questions
from the source and then determined whether it was possible to find their answers by
reading the compressed target. The more questions a hypothetical compression system
can answer, the better it is at compressing the document as a whole.

A question-answering (Q&A) paradigm has been used previously to evaluate
summaries and text compression. Morris, Kasper, and Adams (1992) performed one
of the first Q&A evaluations to investigate the degree to which documents could be
summarized before reading comprehension diminished. Their corpus consisted of four
passages randomly selected from a set of sample Graduate Management Aptitude Test
(GMAT) reading comprehension tests. The texts covered a range of topics including
medieval literature, 18th-century Japan, minority-operated businesses, and Florentine
art. Accompanying each text were eight multiple-choice questions, each containing
five possible answers. The questions were provided by the Educational Testing Service
and were designed to measure the subjects’ reading comprehension. Subjects were
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given various textual treatments: the full text, a human-authored abstract, three system-
generated extracts, and a final treatment where merely the questions were presented
without any text. The questions-only treatment was used as a control to investigate if
subjects could answer questions without any source material. Subjects were instructed
to read the passage (if provided) and answer the multiple choice questions.

The advantage of using standardized tests, such as the GMAT reading compre-
hension test, is that Q&A pairs are provided along with a method for scoring answers
(the correct answer is one among five possible choices). However, our corpora do not
contain ready prepared Q&A pairs; thus we require a methodology for constructing
questions and their answers and scoring documents against the answers. One such
methodology is presented in the TIPSTER Text Summarization Evaluation (SUMMAC;
Mani et al. 2002). SUMMAC was concerned with producing summaries tailored to
specific topics. The Q&A task involved an evaluation where a topic-related summary
for a document was evaluated in terms of its “informativeness,” namely, the degree
to which it contained answers found in the source document to a set of topic-related
questions. For each topic (three in total), 30 relevant documents were chosen to generate
a single summary. One annotator per topic came up with no more than five questions
relating to the obligatory aspects of the topic. An obligatory aspect of a topic was
defined as information that must be present in the document for the document to be
relevant to the topic. The annotators then created an answer key for their topic by
annotating the passages and phrases from the documents which provided the answers
to the questions. In the SUMMAC evaluation, the annotator for each topic was tasked
with scoring the system summaries. Scoring involved comparing the summaries against
the answer key (annotated passages from the source documents) while judging whether
the summary provided a Correct, Partially Correct, or Missing answer. If a summary con-
tained an answer key and sufficient context the summary was deemed correct; however,
summaries would be considered partially correct if the answer key was present but with
insufficient context. If context was completely missing, misleading, or the answer key
was absent then the summary was judged missing.

Our methodology for constructing Q&A pairs and for scoring documents is in-
spired by the SUMMAC evaluation exercise (Mani et al. 2002). Rather than creating
questions for document sets (or topics) our questions were derived from individual
documents. Two annotators were independently instructed to read the documents from
our (test) corpus and create Q&A pairs. Each annotator drafted no more than ten
questions and answers per document, related to its content. Annotators were asked
to create fact-based questions which required an unambiguous answer; these were
typically who, what, where, when, and how–style questions. The purpose of using two
annotators per document was to allow annotators to compare and revise their Q&A
pairs; this process was repeated until a common agreed-upon set of questions was
reached. Revisions typically involved merging and simplifying questions to make them
clearer, and in some cases splitting a question into multiple questions. Documents for
which too few questions were agreed upon and for which the questions and answers
were too ambiguous were removed. This left an evaluation set of six documents with
between five to eight concise questions per document. Figure 4 shows a document from
our test set and the questions and answers our annotators created for it.

For scoring our documents we adopt a more objective method than SUMMAC.
Instead of asking the annotator who constructed the questions to check the document
compressions for the answers, we ask naive participants to read the compressed doc-
uments and answer the questions as best as they can. During evaluation, the source
document is not shown to our subjects; thus, if the compression is difficult to read, the
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Figure 4
Example document from our test set and questions with answer key created for this document.

participants have no point of reference to help them understand the compression. This
is a departure from previous evaluations within text generation tasks, where the source
text is available at judgment time; in our case only the system output is available.

The document-based evaluation was conducted remotely over the Internet using
a custom-built Web interface. Upon loading the Web interface, participants were pre-
sented with a set of instructions that explained the Q&A task and provided examples.
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Table 1
Compression results: compression rate and relation-based F1.

Model CompR Precision Recall F1

McDonald 60.1% 43.9% 36.5%∗ 37.9%∗

Sentence ILP 62.1% 40.7%∗ 39.4%∗ 39.0%∗

Discourse ILP 61.0% 46.2% 44.2% 42.2%
Gold Standard 70.3% —– —– —–
∗ Significantly different from Discourse ILP (p < 0.01 using the Wilcoxon test).

Subjects were first asked to read the compressed document and then rate its readability
on a seven-point scale where 7 = excellent, and 1 = terrible. Next, questions were
presented one at a time (the order being is defined by the annotators) and participants
were encouraged to consult the document for the answer. Answers were written directly
into a text field on the Web interface which allowed free-form text to be submitted. Once
a participant provided an answer and confirmed the answer, the interface locked the
answer to ensure it was not modified later. This was necessary because later questions
could reveal information which would help answer previous questions.

We elicited answers for six documents in four compression conditions: gold stan-
dard, using the ILP sentence-based model, the ILP discourse model, and McDonald’s
(2006) model. A Latin square design was used to prevent participants from seeing
multiple treatments (compressions) of the same document thus removing any learning
effect. A total of 116 unpaid volunteers completed the experiment. They were recruited
through student mailing lists and the Language Experiments Web site.9 The answers
provided by our subjects were scored against an answer key. A correct answer was
marked with a score of one, and zero otherwise. In cases where two answers were
required, a score of 0.5 was awarded to each correct answer. The score for a compressed
document is the average of its question scores. All subsequent tests and comparisons
are performed on the document score.

7. Results

We first assessed the compressions produced by the two ILP models (Discourse and
Sentence) and McDonald (2006) on a sentence-by-sentence basis. Table 1 shows the
compression rates (CompR) for the three systems and evaluates the quality of their
output using grammatical relations F1. As can be seen, all three systems produce
comparable compression rates. The Discourse ILP compressions are slightly longer than
McDonald’s (2006) (61.0% vs. 60.1%) and slightly shorter than the Sentence ILP model
(61.0% vs. 62.1%). The Discourse ILP model is significantly better than McDonald (2006)
and Sentence ILP in terms of F1, indicating that discourse-level information is generally
helpful. All three systems could use further improvement, as inter-annotator agreement
on this data yields an F1 of 65.8% (Clarke 2008).

Let us now consider the results of our document-based evaluation. Table 2 shows
the mean readability ratings obtained for each system and the percentage of questions
answered correctly. We used an analysis of variance (ANOVA) to examine the effect

9 Available at http://www.language-experiments.org.
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Table 2
Human evaluation results: average readability ratings and average percentage of questions
answered correctly.

Model Readability Q&A (%)

McDonald 2.52∗ 51.42∗†

Sentence ILP 2.76∗ 52.35∗†
Discourse ILP 3.10∗ 71.38∗

Gold Standard 5.41† 85.48†

∗ Significantly different from Gold Standard.
† Significantly different from Discourse ILP.

of compression type (McDonald, Sentence ILP, Discourse ILP, Gold Standard). The
ANOVA revealed a reliable effect on both readability and Q&A. Post hoc Tukey tests
showed that McDonald and the two ILP models do not differ significantly in terms
of readability. However, they are all significantly less readable than the gold standard
(α < 0.01). For the Q&A task, we observe that our system is significantly better than
McDonald (α < 0.01) and Sentence ILP (α < 0.01), but significantly worse than the gold
standard (α < 0.05). McDonald and Sentence ILP yield comparable performance (their
difference is not statistically significant).

These results indicate that the automatic systems lag behind the human gold stan-
dard in terms of readability. When reading entire documents, subjects are less tolerant
of ungrammatical constructions. We also find out that, despite relatively low readability,
the documents are overall understandable. The discourse-based model generates more
informative documents—the number of questions answered correctly increases by 19%
in comparison to McDonald and Sentence ILP. This is an encouraging result suggesting
that there are advantages in developing compression models that exploit discourse-
level information information.

Figure 5 shows the output of the ILP systems (Discourse and Sentence) on two
test documents. Words that are dropped have been stricken out. As can be seen, the
two systems produce different compressions, and the discourse-based output is more
coherent. This is corroborated by the readability results where the discourse ILP model
received the highest rating. Also note that some of the compressions produced by the
sentence-based model distort the meaning of the original text, presumably leading the
reader to make wrong inferences. For example, in the second document (Sentence ILP
version) one infers that the victim was urged to report the incident. Moreover, important
information is often omitted, for example, that the victim was indeed raped or that the
strike would be damaging not only to the company but also to its staff (see the Sentence
ILP version in the first document).

8. Conclusions and Future Work

In this article we proposed a novel method for automatic sentence compression. Central
in our approach is the use of discourse-level information, which we argue is an impor-
tant prerequisite for document (as opposed to sentence) compression. Our model uses
integer linear programming for inferring globally optimal compressions in the presence
of linguistically motivated constraints. Our discourse constraints aim to capture local
coherence and are inspired by Centering Theory and lexical chains. We showed that our
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Improvements in certain allowances were made, described as divisive by
the unions, but the company has refused to compromise on a reduction in
the shorter working week. Ford dismissed an immediate meeting with the
unions but did not rule out talks after Christmas. It said that a strike would
be damaging to the company and to its staff. Production closed down at Ford
last night for the Christmas period. Plants will open again on January 2.D
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He threatened her by forcing his truncheon under her chin and then raped
her. She said he only refrained from inserting his truncheon into her, after she
begged him not to. Afterwards he told her not to report the incident because
he could have her “nicked” for soliciting. She did not report it because she
did not think she would be believed. Police investigated after an anonymous
report.D
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Figure 5
Output of Discourse and Sentence ILP systems on two test documents. Words that are stricken
out have been dropped.

model can be successfully employed to produce compressed documents that preserve
most of the original core content.

Our results confirm the conventional wisdom that discourse-level information is
helpful in summarization. We also show that this type of information can be identified
robustly in free text. Our experiments focused primarily on local discourse structure us-
ing two complementary representations. Centering tends to produce more annotations
since it tries to identify a center in every sentence. Lexical chains tend to provide more
general information, such as the major topics in a document. Due to their approximate
nature, there is no one representation that is uniquely suited to the compression task.
Rather, it is the synergy between lexical chains and centering that brings improvements.
The discourse annotations proposed here are not specific to our model. They could
be easily translated into features and incorporated into discriminative modeling par-
adigms (e.g., Nguyen et al. 2004; McDonald 2006; Cohn and Lapata 2009). The same
is true for the Q&A evaluation paradigm employed in our experiments. It could be
straightforwardly adapted to assess the information content of shorter summaries and
potentially used to perform large-scale comparisons within and across systems.

Our approach differs from most summarization work in that our summaries are
fairly long. However, we believe this is the first step to understanding how com-
pression can help summarization. An obvious extension would be to interface our
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compression model with sentence extraction (see Martins and Smith [2009] for an ILP
formulation of a model that jointly performs sentence extraction and compression,
without, however, taking discourse level information into account). The discourse
annotations can help guide the extraction method into selecting topically related sen-
tences which can consequently be compressed together. More generally, formulating the
summarization process in the ILP framework outlined here would allow the integration
of varied and sometimes conflicting constraints during summary generation. Examples
include the summary length, and whether it is coherent, grammatical, or repetitive. Ad-
ditional flexibility can be introduced by changing some of the constraints from hard to
soft (as we did with the compression rate constraints), although determining the penalty
for constraint violation manually using prior knowledge is a non-trivial task (Chang,
Ratinov, and Roth 2007) and automatically learning the constraint penalty results in a
harder learning problem. Importantly, under the ILP formulation such constraints can
be explicitly encoded and applied during inference while finding a globally optimal
solution.
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