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Introduction

What is Sentence Compression?

Sentence Compression
Can be viewed as producing a summary of a single sentence.

More formally
A compressed sentence should:

Use less words than the original sentence.

Preserve the most important information.

Remain grammatical.
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Introduction

Simplification

Sentence compression can involve...

word reordering

word deletion

word substitution

word insertion

Ideally we want to exploit all of these operations but let’s start simple:

Knight and Marcu (2002)
Given an input sentence of words W = w1, w2, . . . , wn, a compression
is formed by dropping any subset of these words.
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Introduction

Example Compression

Original
Prime Minister Tony Blair today insisted the case for holding terrorism
suspects without trial was “absolutely compelling” as the government
published new legislation allowing detention for 90 days without
charge.

Compression
Tony Blair insisted the case for holding terrorism suspects without trial
was “compelling”.
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Introduction

Outline

1 Sentence Compression
Motivation
Previous Work

2 Our Work
How do humans compress sentences?
Do existing methods port well across domains?
What about automatic evaluation measures?

3 Discussion
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Sentence Compression Motivation

Applications

Within summarisation:

Current systems contain manually written rules for sentence
compression.

Other Applications include:

Subtitle generation.

Text compression for display on small screens.

Audio scanning devices for the blind.
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Sentence Compression Previous Work
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Sentence Compression Previous Work

Previous Work

Methods
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Generative

Knight & Marcu (2002)
Turner & Charniak (2005)

Discriminative

Knight & Marcu (2002)
Riezler et al. (2003)
Nguyen et al. (2004)

McDonald (2006)

Unsupervised

Hori & Furui (2004)
Charniak & Turner (2005)
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Sentence Compression Previous Work

Data Requirements

Parallel Corpora
Most approaches rely on a parallel corpus.

Automatically produced Ziff-Davis (Knight and Marcu, 2002).

Domain: newspaper articles.

There is no ‘natural’ resource of original-compressed sentences.

Abstract
Blah blah blah. The
documentation is excellent.
Blah blah blah . . .

Document
. . . blah blah blah. The
documentation is excellent – it
is clearly written with numerous
drawings, cautions and tips,
and includes an entire section
on troubleshooting. Blah . . .
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Sentence Compression Previous Work

Evaluation

Methodology
Algorithms are evaluated on small sample (32 sentences).

Humans are asked to assess grammaticality and information
content.

Typically four participants are used.

Unlike machine translation, no established automatic measure.

Comparisons across systems and system-configurations?
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Our Work How do humans compress sentences?

Outline
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Our Work How do humans compress sentences?

Human-authored Compression Corpus

Spoken Text
Natural domain for compression applications.

Speech is challenging (ungrammatical, incomplete).

No naturally occurring compression corpora.

Methodology
50 Broadcast news documents.
3 annotators remove tokens from original transcript:

preserve most important information in original sentence.
preserve grammaticality of the compressed sentence.

Could also leave a sentence uncompressed.
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Our Work How do humans compress sentences?

Example Human Compressions

Original
President Boris Yeltsin has won the most votes in Russia ’s hotly
contested presidential election , one watched around the world .

Compressions
1 Boris Yeltsin has the most votes in Russia ’s presidential election .
2 Boris Yeltsin has won the most votes in Russia ’s presidential

election , watched around the world .
3 Boris Yeltsin has won the most votes in Russia ’s presidential

election .
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Our Work How do humans compress sentences?

Analysis: Compression Rate

A1 A2 A3 Av Ziff-Davis
% compressed 88 79 87 84.4 97
CompRate 73.1 79.0 70.0 73.03 47

Similar compression rates for annotators.

Ziff-Davis corpus is compressed much more aggressively.

Ziff-Davis corpus may not be comparable with human
performance.
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Our Work How do humans compress sentences?

Analysis: Spans
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Our Work Do existing methods port well across domains?
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Our Work Do existing methods port well across domains?

Decision-based Sentence Compression

Compression as a rewriting problem
Decompose rewriting process into sequence of shift-reduce-drop
actions (Knight and Marcu, 2002) following an extended shift-reduce
parsing paradigm.

Operations

SHIFT transfers the first word from the input list to the stack.
ASSIGNTYPE changes the label of trees at the top of the stack.

REDUCE combines syntactic trees from the stack to form a new
tree.

DROP deletes from the input list subsequences of words that
correspond to a syntactic constituent.
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Our Work Do existing methods port well across domains?

Decision-based Example

(a)
G

A

D

e

B

R

d
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c
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(b)
G

D

e

F

K

b

H

a
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Our Work Do existing methods port well across domains?

Decision-based Example

Stack Input List Operation
G H a
GA C b
G AB Q Z c
G A BR d
G AD e

SHIFT
ASSIGNTYPE H
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Decision-based Example

Stack Input List Operation
H

a
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SHIFT
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Our Work Do existing methods port well across domains?

Decision-based Example

Stack Input List Operation
H

a

K

b
G AB Q Z c
G A BR d
G AD e

REDUCE 2 F
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Our Work Do existing methods port well across domains?

Decision-based Example

Stack Input List Operation
F

K

b

H

a
G AB Q Z c
G A BR d
G AD e

DROP B
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Decision-based Example

Stack Input List Operation
F

K

b

H

a G AD e
SHIFT
ASSIGNTYPE D
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Decision-based Example

Stack Input List Operation
F
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Our Work Do existing methods port well across domains?

Decision-based Compression

Learning cases are automatically generated from a parallel
corpus.

99 features are extracted from each learning case.

Decision tree model learnt from the data.

Model determines which operation to perform given a set of
features.
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Our Work Do existing methods port well across domains?

Word-based Model

Original Model (Hori, 2002)
Word-based score maximisation model.

Score based on corpus knowledge.

Maximised for fixed compression length using dynamic
programming.

Does not require a parallel corpus.

Modifications
Removed the length parameter.

Added more linguistic knowledge into the scoring function.
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Our Work Do existing methods port well across domains?

Score

arg max
V

S(V ) =
M∑

m=1

λI I(Vm) + λLL(Vm|Vm−1Vm−2) + λsov SOV (Vm)

SOV (wi) =

{
freq if wi in subject, object or verb role
λdefault otherwise

Significance score is designed to include important nouns and
verbs.

Language model’s task is to preserve grammaticality.

Subjects, objects and verbs should not be dropped.

Words in other syntactic roles can be considered for removal.

James Clarke and Mirella Lapata 40



Our Work Do existing methods port well across domains?

Score

arg max
V

S(V ) =
M∑

m=1

λI I(Vm) + λLL(Vm|Vm−1Vm−2) + λsov SOV (Vm)

SOV (wi) =

{
freq if wi in subject, object or verb role
λdefault otherwise

Significance score is designed to include important nouns and
verbs.

Language model’s task is to preserve grammaticality.

Subjects, objects and verbs should not be dropped.

Words in other syntactic roles can be considered for removal.

James Clarke and Mirella Lapata 41



Our Work Do existing methods port well across domains?

Score

arg max
V

S(V ) =
M∑

m=1

λI I(Vm) + λLL(Vm|Vm−1Vm−2) + λsov SOV (Vm)

SOV (wi) =

{
freq if wi in subject, object or verb role
λdefault otherwise

Significance score is designed to include important nouns and
verbs.

Language model’s task is to preserve grammaticality.

Subjects, objects and verbs should not be dropped.

Words in other syntactic roles can be considered for removal.

James Clarke and Mirella Lapata 42



Our Work Do existing methods port well across domains?

Score

arg max
V

S(V ) =
M∑

m=1

λI I(Vm) + λLL(Vm|Vm−1Vm−2) + λsov SOV (Vm)

SOV (wi) =

{
freq if wi in subject, object or verb role
λdefault otherwise

Significance score is designed to include important nouns and
verbs.

Language model’s task is to preserve grammaticality.

Subjects, objects and verbs should not be dropped.

Words in other syntactic roles can be considered for removal.

James Clarke and Mirella Lapata 43



Our Work Do existing methods port well across domains?

Score

arg max
V

S(V ) =
M∑

m=1

λI I(Vm) + λLL(Vm|Vm−1Vm−2) + λsov SOV (Vm)

SOV (wi) =

{
freq if wi in subject, object or verb role
λdefault otherwise

Significance score is designed to include important nouns and
verbs.

Language model’s task is to preserve grammaticality.

Subjects, objects and verbs should not be dropped.

Words in other syntactic roles can be considered for removal.

James Clarke and Mirella Lapata 44



Our Work Do existing methods port well across domains?

Score

arg max
V

S(V ) =
M∑

m=1

λI I(Vm) + λLL(Vm|Vm−1Vm−2) + λsov SOV (Vm)

SOV (wi) =

{
freq if wi in subject, object or verb role
λdefault otherwise

Significance score is designed to include important nouns and
verbs.

Language model’s task is to preserve grammaticality.

Subjects, objects and verbs should not be dropped.

Words in other syntactic roles can be considered for removal.

James Clarke and Mirella Lapata 45



Our Work Do existing methods port well across domains?

Comparison

Experimental Setup
Compare decision-tree and word-based model on Ziff-Davis and
Broadcast news corpus.
Evaluate against human judgements:

Sixty unpaid volunteers.
Instructions and examples define the compression task.
Rate each sentence on a five point scale.
Take into account information retained and grammaticality.
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Our Work Do existing methods port well across domains?

Results

Broadcast News CompR Ratings

Decision-tree 0.55 2.04
Word-based 0.72 2.78
gold standard 0.71 3.87

Ziff-Davis CompR Ratings

Decision-tree 0.58 2.34
Word-based 0.60 2.43
gold standard 0.54 3.53
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Results

Broadcast News CompR Ratings

Decision-tree 0.55 2.04
Word-based 0.72 2.78
gold standard 0.71 3.87

Ziff-Davis CompR Ratings

Decision-tree 0.58 2.34
Word-based 0.60 2.43
gold standard 0.54 3.53

Decision-tree sensitive to training data.
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Our Work Do existing methods port well across domains?

Results

Broadcast News CompR Ratings

Decision-tree 0.55 2.04
Word-based 0.72 2.78
gold standard 0.71 3.87

Ziff-Davis CompR Ratings

Decision-tree 0.58 2.34
Word-based 0.60 2.43
gold standard 0.54 3.53

Rebuilds original sentence 75% of the time.
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Results

Broadcast News CompR Ratings

Decision-tree 0.55 2.04
Word-based 0.72 2.78
gold standard 0.71 3.87

Ziff-Davis CompR Ratings

Decision-tree 0.58 2.34
Word-based 0.60 2.43
gold standard 0.54 3.53

Word-based model produces compression rate similar to gold-standard.
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Results

Broadcast News CompR Ratings

Decision-tree 0.55 2.04
Word-based 0.72 2.78
gold standard 0.71 3.87

Ziff-Davis CompR Ratings

Decision-tree 0.58 2.34
Word-based 0.60 2.43
gold standard 0.54 3.53

Word-based model sig. better than decision-tree; both sig. worse than
humans
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Results

Broadcast News CompR Ratings

Decision-tree 0.55 2.04
Word-based 0.72 2.78
gold standard 0.71 3.87

Ziff-Davis CompR Ratings

Decision-tree 0.58 2.34
Word-based 0.60 2.43
gold standard 0.54 3.53

No sig. difference between models; both sig. worse than humans.
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Our Work What about automatic evaluation measures?

Outline

1 Sentence Compression
Motivation
Previous Work

2 Our Work
How do humans compress sentences?
Do existing methods port well across domains?
What about automatic evaluation measures?

3 Discussion
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Our Work What about automatic evaluation measures?

Simple String Accuracy

Based on the edit distance between two strings (Bangalore, Rambow,
and Whittaker, 2000).

Simple String Accuracy (SSA) = (1 − I + D + S
R

)

I = Insertions
D = Deletions
S = Substitutions
R = Length of gold-standard
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Our Work What about automatic evaluation measures?

Relation-based Evaluation

Proposed by Riezler et al. (2003).

Compares the grammatical relations between compression and
gold-standard.

This allows us “to measure the semantic aspects of summarisation
quality in terms of grammatical-functional information”

Use standard IR measure of F-score.
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Our Work What about automatic evaluation measures?

Correlation Analysis

Measure Ziff-Davis Broadcast News
SSA 0.171 0.348*
F-score 0.575** 0.532**
IntSubj 0.679 0.746

*p < 0.05 **p < 0.01

SSA does not correlate with human judgements on both corpora.

Relation F-score correlates significantly with human ratings on
both corpora.
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Our Work What about automatic evaluation measures?

Example System Compressions
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Our Work What about automatic evaluation measures?

Example System Compressions

o: Apparently Fergie very much wants to have a career in television.

d: A career in television.

w: Fergie wants to have a career in television.

g: Fergie wants a career in television.
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Our Work What about automatic evaluation measures?

Example System Compressions

o: Many debugging features, including user-defined break points
and variable-watching and message-watching windows, have been
added.

d: Many debugging features.

w: Debugging features, and windows, have been added.

g: Many debugging features have been added.
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Our Work What about automatic evaluation measures?

Example System Compressions

o: As you said, the president has just left for a busy three days of
speeches and fundraising in Nevada, California and New Mexico.

d: As you said, the president has just left for a busy three days.

w: You said, the president has left for three days of speeches and
fundraising in Nevada, California and New Mexico.

g: The president left for three days of speeches and fundraising in
Nevada, California and New Mexico.
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Discussion

Discussion

Findings
Decision-tree model is sensitive to the style of training data and
does not generalise to our new corpus.

Word-based model performs significantly better than decision-tree
on broadcast news.

Both systems are comparable on written text.

F-Score correlates with human judgements.
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Discussion

Future Work

Sentence Compression as Optimisation
Underlying model: Trigram language model.

Decoding: Integer Programming.
Advantage: Include linguistically motivated constraints.

Compressions are structurally and semantically valid.

See my poster today!
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